46.

NOTE ON A SYSTEM OF IMAGINARIES.

[From the Philosophical Magazine, vol. XXX. (1847), pp. 257-258.]

THE octuple system of imaginary quantities i_1 , i_2 , i_3 , i_4 , i_5 , i_6 , i_7 , which I mentioned in a former paper [21], (and the conditions for the combination of which are contained in the symbols

123, 246, 374, 145, 275, 365, 167,

i.e. in the formulæ

 $i_2i_3 = i_1, \quad i_3i_1 = i_2, \quad i_1i_2 = i_3, \quad i_3i_2 = -i_1, \quad i_1i_3 = -i_2, \quad i_2i_1 = -i_3,$

with corresponding formulæ for the other triplets $i_2 i_4 i_6$, &c.,) possesses the following property; namely, if i_{α} , i_{β} , i_{γ} be any three of the seven quantities which do not form a triplet, then

 $(i_{\alpha}i_{\beta}) \cdot i_{\gamma} = -i_{\alpha} \cdot (i_{\beta}i_{\gamma}).$

Thus, for instance,

$$(i_3i_4) \cdot i_5 = -i_7 \cdot i_5 = -i_2;$$

 $i_3 \cdot (i_4i_5) = i_3 \cdot i_1 = i_2,$

but

and similarly for any other such combination. When i_a , i_β , i_γ form a triplet, the two products are equal, and reduce themselves each to -1, or each to +1, according to the order of the three quantities forming the triplet. Hence in the octuple system in question neither the commutative nor the distributive law holds, which is a still wider departure from the laws of ordinary algebra than that which is presented by Sir W. Hamilton's quaternions.

I may mention, that a system of coefficients, which I have obtained for the rectangular transformation of coordinates in n dimensions (Crelle, t. XXXII. [1846] "Sur quelques propriétés des Déterminans gauches" [52]), does not appear to be at all connected with any system of imaginary quantities, though coinciding in the case of n=3 with those mentioned in my paper "On Certain Results relating to Quaternions," *Phil. Mag.* Feb. 1845, [20].

www.rcin.org.pl