46.

NOTE ON A SYSTEM OF IMAGINARIES.

[From the Philosophical Magazine, vol. xxx. (1847), pp. 257-258.]

The octuple system of imaginary quantities $i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6}, i_{7}$, which I mentioned in a former paper [21], (and the conditions for the combination of which are contained in the symbols

$$
123, \quad 246, \quad 374, \quad 145, \quad 275, \quad 365, \quad 167 \text {, }
$$

i.e. in the formulæ

$$
i_{2} i_{3}=i_{1}, \quad i_{3} i_{1}=i_{2}, \quad i_{1} i_{2}=i_{3}, \quad i_{3} i_{2}=-i_{1}, \quad i_{1} i_{3}=-i_{2}, \quad i_{2} i_{1}=-i_{3},
$$

with corresponding formulæ for the other triplets $i_{2} i_{4} i_{6}$, \&c.,) possesses the following property; namely, if $i_{\alpha}, i_{\beta}, i_{\gamma}$ be any three of the seven quantities which do not form a triplet, then

$$
\left(i_{a} i_{\beta}\right) \cdot i_{\gamma}=-i_{\alpha} \cdot\left(i_{\beta} i_{\gamma}\right)
$$

Thus, for instance,
but

$$
\begin{aligned}
& \left(i_{3} i_{4}\right) \cdot i_{5}=-i_{7} \cdot i_{5}=-i_{2} ; \\
& i_{3} \cdot\left(i_{4} i_{5}\right)=\quad i_{3} \cdot i_{1}=\quad i_{2}
\end{aligned}
$$

and similarly for any other such combination. When $i_{\alpha}, i_{\beta}, i_{\gamma}$ form a triplet, the two products are equal, and reduce themselves each to -1 , or each to +1 , according to the order of the three quantities forming the triplet. Hence in the octuple system in question neither the commutative nor the distributive law holds, which is a still wider departure from the laws of ordinary algebra than that which is presented by Sir W. Hamilton's quaternions.

I may mention, that a system of coefficients, which I have obtained for the rectangular transformation of coordinates in n dimensions (Crelle, t. xxxir. [1846] "Sur quelques propriétés des Déterminans gauches" [52]), does not appear to be at all connected with any system of imaginary quantities, though coinciding in the case of $n=3$ with those mentioned in my paper "On Certain Results relating to Quaternions," Phil. Mag. Feb. 1845, [20].

