558.

A GEOMETRICAL INTERPRETATION OF THE EQUATIONS OBTAINED BY EQUATING TO ZERO THE RESULTANT AND THE DISCRIMINANTS OF TWO BINARY QUANTICS.

[From the Proceedings of the London Mathematical Society, vol. v. (1873-1874), pp. 31-33. Read March 12, 1874.]

Consider the equations

$$
\begin{aligned}
& U=(a, b, \ldots \backslash t, 1)^{\lambda}=0, \\
& U^{\prime}=\left(a^{\prime}, b^{\prime}, \ldots \backslash(t, 1)^{\lambda^{\prime}}=0 ;\right.
\end{aligned}
$$

and equating to zero the discriminants of the two functions respectively, and also the resultant of the two functions, let the equations thus obtained be

$$
\begin{aligned}
& \Delta=(a, b, \ldots)^{2 \lambda-2}=0, \\
& \Delta^{\prime}=\left(a^{\prime}, b^{\prime}, \ldots\right)^{2 \lambda^{\prime}-2}=0, \\
& R=(a, b, \ldots)^{\lambda^{\prime}}(\grave{a}, b, \ldots)^{\lambda}=0 .
\end{aligned}
$$

I take $(a, b, \ldots),\left(a^{\prime}, b^{\prime}, \ldots\right)$ to be linear functions of the coordinates (x, y, z); and t to be an indeterminate parameter. Hence $U=0$ represents a line the envelope whereof is the curve $\Delta=0$, or, what is the same thing, the equation $U=0$ represents any tangent of the curve $\Delta=0$; this is a unicursal curve of the order $2 \lambda-2$ and class λ, with $3(\lambda-2)$ cusps and $\frac{1}{2}(\lambda-2)(\lambda-3)$ nodes. Similarly $U^{\prime}=0$ represents a line the envelope of which is the curve $\Delta^{\prime}=0$: this is a unicursal curve of the order $2 \lambda^{\prime}-2$ and class λ^{\prime}, with $3\left(\lambda^{\prime}-2\right)$ cusps and $\frac{1}{2}\left(\lambda^{\prime}-2\right)\left(\lambda^{\prime}-3\right)$ nodes; the equation $U^{\prime}=0$ represents any tangent of this curve.

The equations $U=0, U^{\prime}=0$ considered as existing simultaneously with the same value of t, establish a $(1,1)$ correspondence between the tangents (or if we please, between the points) of the two curves. The locus of the intersection of the corre-
sponding tangents is the curve $R=0$, a unicursal curve of the order $\lambda+\lambda^{\prime}$, with $\frac{1}{2}\left(\lambda+\lambda^{\prime}-1\right)\left(\lambda+\lambda^{\prime}-2\right)$ nodes and no cusps; consequently of the class $2\left(\lambda+\lambda^{\prime}-1\right)$.

It is to be shown that the curve $R=0$ touches the curve $\Delta=0$ in $\lambda^{\prime}+2 \lambda-2$ points, and similarly the curve $\Delta^{\prime}=0$ in $2 \lambda^{\prime}+\lambda-2$ points.

In fact, consider any tangent T^{\prime} of the curve Δ^{\prime}; let this meet the curve Δ in a point A, and let Q be the tangent at A to the curve Δ; suppose, moreover, that T is the tangent of Δ corresponding to the tangent T^{\prime} of Δ^{\prime}. Then if Q and T coincide, the corresponding tangent of $T^{\prime \prime}$ will be Q, and the curve R will pass through A. It is easy to see that in this case the curves R, Δ will touch at A. Again, if P be a tangent from A to the curve Δ, then, if P and T coincide, the corresponding tangent of $T^{\prime \prime}$ will be P, and the curve R will pass through A; but in this case the point A will be a mere intersection, not a point of contact, of the two curves.

The tangents T, Q each correspond to T^{\prime}, and they consequently correspond to each other. For a given position of T we have a single position of $T^{\prime \prime}$, and therefore $2 \lambda-2$ positions of A, or, what is the same thing, of Q; that is, for a given position of T we have $2 \lambda-2$ positions of Q. Again, to a given position of Q corresponds a single position of A, therefore λ^{\prime} positions of T^{\prime}, therefore also λ^{\prime} positions of T; that is, for a given position of Q we have λ^{\prime} positions of T. The correspondence between T, Q is thus a $\left(\lambda^{\prime}, 2 \lambda-2\right)$ correspondence, and the number of united tangents is therefore $\lambda^{\prime}+2 \lambda-2$, or the curves R, Δ touch in $\lambda^{\prime}+2 \lambda-2$ points.

The tangents T, P each correspond to T^{\prime}, and they therefore correspond to each other. For a given position of T we have a single position of $T^{\prime \prime}$, and therefore $2 \lambda-2$ positions of A, and thence $(2 \lambda-2)(\lambda-2)$ positions of P; that is, for a given position of T we have $(2 \lambda-2)(\lambda-2)$ positions of P. Again, to a given position of P correspond $2 \lambda-4$ positions of A, therefore $(2 \lambda-4) \lambda^{\prime}$ positions of T^{\prime} or of T; that is, for a given position of P we have $(2 \lambda-4) \lambda^{\prime}$ positions of T. The correspondence between T, P is thus a $\left[2 \lambda^{\prime}(\lambda-2), 2(\lambda-1)(\lambda-2)\right]$ correspondence, and the number of united tangents is $2\left(\lambda+\lambda^{\prime}-1\right)(\lambda-2)$; or the curves R, Δ meet in $2\left(\lambda+\lambda^{\prime}-1\right)(\lambda-2)$ points.

Reckoning the contacts twice, the total number of intersections of R, Δ is

$$
2 \lambda^{\prime}+4 \lambda-4+2\left(\lambda+\lambda^{\prime}-1\right)(\lambda-2),=\left(\lambda+\lambda^{\prime}\right)(2 \lambda-2),
$$

as it should be.
In the particular case $\lambda=\lambda^{\prime}=2$, the curves Δ, Δ^{\prime} are conics, and the curve R is a quartic curve touching each of the conics 4 times; this is at once verified, since the equations here are

$$
a c-b^{2}=0, \quad a^{\prime} c^{\prime}-b^{\prime 2}=0, \quad 4\left(a c-b^{2}\right)\left(a^{\prime} c^{\prime}-b^{\prime 2}\right)-\left(a c^{\prime}+a^{\prime} c-2 b b^{\prime}\right)^{2}=0 .
$$

