562.

[ADDITION TO MR. WALTON'S PAPER "ON A THEOREM IN MAXIMA AND MINIMA."]

[From the Quarterly Journal of Pure and Applied Mathematics, vol. x. (1870), pp. 262, 263.]

In what follows I write x, y, z in place of Mr Walton's u, v, w : (so that if $i=\sqrt{ }(-1)$, as usual, we have

$$
f(x+i y)=P+i Q):
$$

and I attend exclusively to the case where the second differential coefficients of P, Q do not vanish.

There are not on the surface $z=P$ any proper maxima or minima; but only level points, such as at the top of a pass: say there are not any summits or imits, but only cruxes; and moreover at any crux, the two crucial (or level) directions intersect at right angles. Every node of the curve $Q=0$ is subjacent to a crux of the surface $z=P$; and moreover the two directions of the curve $Q=0$ at the node are at right angles to each other; hence, considering the intersection of the surface $z=P$ by the cylinder $Q=0$, the path $Q=0$ on the surface has a node at the crux; or say there are at the crux two directions of the path; these cross at right angles, and are consequently separated the one from the other by the crucial directions; that is to say, there is one path ascending, and another path descending, each way from the crux. And the complete statement is; that the elevation of the path is then only a maximum or minimum when the path passes through a crux; and that at any crux there are two paths, one ascending, the other descending, each way from the crux.

The analytical demonstration is exceeding simple; we have

$$
\left(\frac{d P}{d y}+i \frac{d Q}{d y}\right)=i\left(\frac{d P}{d x}+i \frac{d Q}{d x}\right) ;
$$

that is,

$$
\frac{d P}{d y}=-\frac{d Q}{d x}, \quad \frac{d Q}{d y}=\frac{d P}{d x},
$$

and passing thence to the second differential coefficients, we may write

$$
\begin{gathered}
\frac{d P}{d x}=\frac{d Q}{d y}=L, \quad \frac{d P}{d y}=-\frac{d Q}{d x}=M, \\
\frac{d^{2} P}{d x d y}=-\frac{d^{2} Q}{d x^{2}}=\frac{d^{2} Q}{d y^{2}}=a, \\
\frac{d^{2} Q}{d x d y}=\frac{d^{2} P}{d x^{2}}=-\frac{d^{2} P}{d y^{2}}=b,
\end{gathered}
$$

so that we have

$$
\begin{array}{ll}
\delta P=L \delta x+M \delta y, & \delta Q=-M \delta x+L \delta y, \\
\delta^{2} P=(b, a,-b \gamma \delta x, \delta y)^{2}, & \delta^{2} Q=(-a, b, a 久 \delta x, \delta y)^{2} .
\end{array}
$$

Hence, for the maximum or minimum elevation of the path, we have $0=\delta P$, where $\delta Q=0$; that is, $0=\frac{L^{2}+M^{2}}{L} \delta x$, and therefore $L^{2}+M^{2}=0$; that is, $L=0, M=0$; and at any such point $\delta z=0$, that is, there is a crux of the surface $z=P$; and $\delta Q=0$, that is, there is a node of the curve $Q=0$. Moreover the crucial directions for the surface $z=P$ are given by the equation $(b, a,-b \chi \delta x, \delta y)^{2}=0$, or these are at right angles to each other; and the nodal directions for the curve $Q=0$ are given by $(-a, b, a \chi \delta x, \delta y)^{2}=0$; or these are likewise at right angles to each other.

