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[ADDITION TO MR. WALTON’S PAPER “ON A THEOREM IN 
MAXIMA AND MINIMA.”]

[From the Quarterly Journal of Pure and Applied Mathematics, vol. X. (1870), pp. 262, 263.]In what follows I write x, y, z in place of Mr Walton’s u, v, w: (so that if 
i = √(- 1), as usual, we have 
and I attend exclusively to the case where the second differential coefficients of P, Q do not vanish.There are not on the surface z = P any proper maxima or minima; but only level points, such as at the top of a pass: say there are not any summits or imits, but only cruxes; and moreover at any crux, the two crucial (or level) directions intersect at right angles. Every node of the curve Q = 0 is subjacent to a crux of the surface z = P', and moreover the two directions of the curve Q = 0 at the node are at right angles to each other; hence, considering the intersection of the surface z = P by the cylinder Q = 0, the path Q = 0 on the surface has a node at the crux ; or say there are at the crux two directions of the path ; these cross at right angles, and are consequently separated the one from the other by the crucial directions; that is to say, there is one path ascending, and another path descending, each way from the crux. And the complete statement is; that the elevation of the path is then only a maximum or minimum when the path passes through a crux; and that at any crux there are two paths, one ascending, the other descending, each way from the crux.The analytical demonstration is exceeding simple; we have
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and passing thence to the second differential coefficients, we may write 

so that we have
Hence, for the maximum or minimum elevation of the path, we have 0 = δP, where 7> ∣ m2δQ = 0; that is, 0 = -f— δ^, and therefore L2 + M'2 = 0 ; that is, L = 0, M = 0 ; and Jjat any such point δz = 0, that is, there is a crux of the surface z = P; and δQ = 0, that is, there is a node of the curve Q = 0. Moreover the crucial directions for the surface z = P are given by the equation (δ, α, — b'Qδx, δy)3 = 0, or these are at right angles to each other; and the nodal directions for the curve Q = 0 are given by 
(— a, b, afiδπ, δy)2 = 0; or these are likewise at right angles to each other.
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