566.

ON THE TRANSFORMATION OF THE EQUATION OF A SURFACE TO A SET OF CHIEF AXES.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xiI. (1873), pp. 34-38.]

We have at any point P of a surface a set of chief axes $(P X, P Y, P Z)$, viz. these are, say the axis of Z in the direction of the normal, and those of X, Y in the directions of the tangents to the two curves of curvature respectively. It may be required to transform the equation of the surface to the axes in question; to show how to effect this, take (x, y, z) for the original (rectangular) coordinates of the point $P, x+\delta x, y+\delta y, z+\delta z$ for the like coordinates of any other point on the surface, so that ($\delta x, \delta y, \delta z$) are the coordinates of the point referred to the origin P; the equation of the surface, writing down only the terms of the first and second orders in the coordinates $\delta x, \delta y, \delta z$, is

$$
A \delta x+B \delta y+C \delta z+\frac{1}{2}(a, b, c, f, g, h)(\delta x, \delta y, \delta z)^{2}+\& c .=0
$$

where (A, B, C) are the first derived functions and (a, b, c, f, g, h) the second derived functions of U for the values (x, y, z) which belong to the given point P, if $U=0$ is the equation of the surface in terms of the original coordinates (x, y, z); we have X, Y, Z linear functions of ($\delta x, \delta y, \delta z$); say

	δx	δy	δz
X	a_{1}	β_{1}	γ_{1}
Y	a_{2}	β_{2}	γ_{2}
Z	α	β	γ

that is, $X=\alpha_{1} \delta x+\beta_{1} \delta y+\gamma_{1} \delta z$, \&c. and $\delta x=\alpha_{1} X+\alpha_{2} Y+\alpha Z$, \&c. where the coefficients satisfy the ordinary relations in the case of transformation between two sets of rectangular axes; and the transformed equation is therefore

$$
\begin{aligned}
A\left(\alpha_{1} X+\alpha_{2} Y\right. & +\alpha Z)+B\left(\beta_{1} X+\beta_{2} Y+\beta Z\right)+C\left(\gamma_{1} X+\gamma_{2} Y+\gamma Z\right) \\
& +(a, b, c, f, g, h)\left(\alpha_{1} X+\alpha_{2} Y+\alpha Z, \beta_{1} X+\beta_{2} Y+\beta Z, \gamma_{1} X+\gamma_{2} Y+\gamma Z\right)^{2}=0
\end{aligned}
$$

or, as this may be written,

$$
\begin{aligned}
X\left(A \alpha_{1}+B \beta_{1}\right. & \left.+C \gamma_{1}\right)+Y\left(A \alpha_{2}+B \beta_{2}+C \gamma_{2}\right)+Z(A \alpha+B \beta+C \gamma) \\
& +\frac{1}{2} X^{2}(a, \ldots)\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right)^{2} \\
& +\frac{1}{2} Y^{2}(a, \ldots)\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right)^{2} \\
& +X Y(a, \ldots)\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right)\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right) \\
& +X Z(a, \ldots)\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right)(\alpha, \beta, \gamma) \\
& +Y Z(a, \ldots)\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right)(\alpha, \beta, \gamma) \\
& +\frac{1}{2} Z^{2}(a, \ldots)(\alpha, \beta, \gamma)^{2} \quad+\& c .=0
\end{aligned}
$$

where the \&c. refers to terms of the form $(X, Y, Z)^{3}$ and higher powers.
But in order that the new axes may be chief axes, we must have

$$
\begin{array}{r}
A \alpha_{1}+B \beta_{1}+C \gamma_{1}=0, \\
A \alpha_{2}+B \beta_{2}+C \gamma_{2}=0, \\
(a, \ldots)\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right)\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right)=0,
\end{array}
$$

so that putting for shortness

$$
A \alpha+B \beta+C \gamma=\nabla
$$

the equation becomes

$$
\begin{aligned}
\nabla Z & +\frac{1}{2} X^{2}(a, \ldots)\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right)^{2}+\frac{1}{2} Y^{2}(a, \ldots)\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right)^{2} \\
& +X Z(a, \ldots)\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right)(\alpha, \beta, \gamma) \\
& +Y Z(a, \ldots)\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right)(\alpha, \beta, \gamma) \\
& +\frac{1}{2} Z^{2} \quad(a, \ldots)(\alpha, \beta, \gamma)^{2} \quad+\& c .=0
\end{aligned}
$$

We have

$$
A: B: C=\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}: \gamma_{1} \alpha_{2}-\gamma_{2} \alpha_{1}: \alpha_{1} \beta_{2}-\alpha_{2} \beta_{1}
$$

that is,
and thence

$$
\alpha, \beta, \gamma=\frac{A}{\nabla}, \frac{B}{\nabla}, \frac{C}{\nabla} ; \nabla=\sqrt{ }\left(A^{2}+B^{2}+C^{2}\right) .
$$

I write

$$
\frac{1}{\rho_{1}}=(a, \ldots)\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right)^{2},
$$

and also for a moment

$$
\begin{aligned}
& P=\left(a-\frac{1}{\rho_{1}}, \quad h, \quad g\right)\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right) \\
& Q=\left(h, \quad b-\frac{1}{\rho_{1}}, \quad f\right)\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right) \\
& R=\left(g, \quad f, \quad c-\frac{1}{\rho_{1}}\right)\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right)
\end{aligned}
$$

c. IX.

We find

$$
\begin{aligned}
& P \alpha_{1}+Q \beta_{1}+R \gamma_{1}=(a, \ldots)\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right)^{2}-\frac{1}{\rho_{1}},=0, \\
& P \alpha_{2}+Q \beta_{2}+R \gamma_{2}=(a, \ldots)\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right)\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right)-\frac{1}{\rho_{1}}\left(\alpha_{1} \alpha_{2}+\beta_{1} \beta_{2}+\gamma_{1} \gamma_{2}\right),=0,
\end{aligned}
$$

and thence

$$
P: Q: R=\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}: \gamma_{1} \alpha_{2}-\gamma_{2} \alpha_{1}: \alpha_{1} \beta_{2}-\alpha_{2} \beta_{1}
$$

or say

$$
P, Q, R=\theta_{1} A, \theta_{1} B, \theta_{1} C
$$

we have thus the equations

$$
\begin{aligned}
& \left(a-\frac{1}{\rho_{1}}, \quad h, \quad g\right)\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right)=\theta_{1} A, \\
& \left(h, b-\frac{1}{\rho_{1}}, \quad f\right)\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right)=\theta_{1} B, \\
& \left(g, f, c-\frac{1}{\rho_{1}}\right)\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right)=\theta_{1} C,
\end{aligned}
$$

and joining hereto

$$
(A, B, C)\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right)=0
$$

we eliminate $\alpha_{1}, \beta_{1}, \gamma_{1}$ and obtain the equation

$$
\left|\begin{array}{cccc}
a-\frac{1}{\rho_{1}}, & h, & g, & A \\
h, & b-\frac{1}{\rho_{1}}, & f, & B \\
g & , & f, & c-\frac{1}{\rho_{1}}, \\
A \\
A & , & B, & C,
\end{array}\right|=0
$$

and in like manner writing

$$
\frac{1}{\rho_{2}}=(a, \ldots)\left(a_{2}, \beta_{2}, \gamma_{2}\right)^{2}
$$

we have the same equation for ρ_{2}; wherefore ρ_{1}, ρ_{2} are the roots of the quadric equation

$$
\left|\begin{array}{cccc}
a-\frac{1}{\rho}, & h, & g, & A \\
h, & b-\frac{1}{\rho}, & f, & B \\
g, & f, & c-\frac{1}{\rho}, & C \\
A, & B, & C, & 0
\end{array}\right|=0
$$

Moreover, ρ_{1}, ρ_{2} being thus determined, we have, $\alpha_{1}, \beta_{1}, \gamma_{1}, \theta_{1}$ proportional to the determinants formed with the matrix

$$
\left|\begin{array}{cccc}
a-\frac{1}{\rho_{1}}, & h, & g, & A \\
h, & b-\frac{1}{\rho_{1}}, & f, & B \\
g, & f, & c-\frac{1}{\rho_{1}}, & C
\end{array}\right|
$$

say, $\boldsymbol{\alpha}_{1}, \beta_{1}, \gamma_{1}, \theta_{1}=k \mathfrak{A}_{1}, k \mathfrak{B}_{1}, k \mathfrak{G}_{1}, k \Omega$, where $\mathfrak{H}_{1}, \mathfrak{B}_{1}, \mathfrak{G}_{1}, \Omega_{1}$ are the determinants in question ; and then $1=k^{2}\left(\mathfrak{H}_{1}{ }^{2}+\mathfrak{B}_{1}{ }^{2}+\mathfrak{E}_{1}{ }^{2}\right)$, or we have

$$
\theta_{1}=\frac{\Omega_{1}}{\sqrt{\left(\mathfrak{H}_{1}{ }^{2}+\mathfrak{B}_{1}{ }^{2}+\mathfrak{๒}_{1}{ }^{2}\right)}} .
$$

But we find at once

$$
(a, \ldots)\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right)(x, \beta, \gamma)=\theta_{1}(A \alpha+B \beta+C \gamma)=\theta_{1} \nabla
$$

that is,

$$
(a, \ldots)\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right)(\alpha, \beta, \gamma)=\frac{\nabla \Omega_{1}}{\sqrt{\left(\mathscr{H}_{1}{ }^{2}+\mathfrak{B}_{1}{ }^{2}+\xi_{1}{ }^{2}\right)}},
$$

and in the same manner

$$
(a, \ldots)\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right)(\alpha, \beta, \gamma)=\frac{\nabla \Omega_{2}}{\sqrt{\left(\mathfrak{H}_{2}{ }^{2}+\mathfrak{B}_{2}{ }^{2}+\left(\mathfrak{\xi}_{2}{ }^{2}\right)\right.} .}
$$

Hence the transformed equation is

$$
\begin{aligned}
\nabla Z & +\frac{1}{2} \frac{X^{2}}{\rho_{1}}+\frac{1}{2} \frac{Y^{2}}{\rho_{2}} \\
& +X Z \frac{\nabla \Omega_{1}}{\sqrt{\left(\mathscr{H}_{1}{ }^{2}+\mathfrak{B}_{1}{ }^{2}+\mathfrak{b}_{1}{ }^{2}\right)}+Y Z \frac{\nabla \Omega_{2}}{\sqrt{\left(\mathscr{H}_{2}{ }^{2}+\mathfrak{B}_{2}{ }^{2}+\mathfrak{F}_{2}{ }^{2}\right)}}} \begin{aligned}
&+\frac{1}{2} Z^{2} \\
& \frac{(a, \ldots)(A, B, C)^{2}}{\nabla^{2}}+\& c .=0,
\end{aligned},=0,
\end{aligned}
$$

where it will be recollected that $\nabla=\sqrt{ }\left(A^{2}+B^{2}+C^{2}\right)$. The \&c. refers as before to the terms $(X, Y, Z)^{3}$ and higher powers, which are obtained from the corresponding terms in $\delta x, \delta y, \delta z$, by substituting for these their values $\delta x=\alpha_{1} X+\alpha_{2} Y+\alpha Z$, \&c., where the coefficients have the values above obtained for them. It will be observed, that the radii of curvature are $\nabla \rho_{1}, \nabla \rho_{2}$, and that the process includes an investigation of the values of these radii of curvature similar to the ordinary one; the novelty is in the terms in $X Z, Y Z$, and Z^{2}. But regarding X, Y as small quantities of the first order, Z is of the second order, and the terms in $X Z, Y Z$ are of the third order, and that in Z^{2} of the fourth order.

