573.

NOTE ON THE $(2,2)$ CORRESPONDENCE OF TWO VARIABLES.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. XII. (1873), pp. 197, 198.]

In connection with my paper "On the porism of the in-and-circumscribed polygon and the (2, 2) correspondence of points on a conic," Quar. Math. Jour., t. xi. (1871), pp. 83-91, [489], I remark that if (θ, ϕ) have a symmetrical $(2,2)$ correspondence, and also (ϕ, χ) the same symmetrical $(2,2)$ correspondence, then (θ, χ) will have a (not in general the same) symmetrical (2,2) correspondence. In fact, to a given value θ there correspond, say the values ϕ_{1}, ϕ_{2} of ϕ; then to ϕ_{1} correspond the values θ, χ_{1} of χ (viz. one of the two values is $=\theta$), and to ϕ_{2} the values θ, χ_{2} of χ (viz. one of the values is here again $=\theta$); that is, to the given value θ there correspond the two values χ_{1}, χ_{2} of χ; and similarly to any value of χ there correspond two values of θ; viz. to χ_{1} the value θ and say θ_{1}; to χ_{2} the value θ and say θ_{2}; that is, the correspondence of θ, χ is a $(2,2)$ correspondence and is symmetrical.

Analytically, if we have

$$
(a, b, c, f, g, h \gamma \theta \phi, \theta+\phi, 1)^{2}=0,
$$

and

$$
(a, b, c, f, g, h \chi \phi \chi, \phi+\chi, 1)^{2}=0
$$

then writing

$$
(a, \ldots 久 \phi u, \phi+u, 1)^{2}=0 \text {, }
$$

the roots hereof are $u=\theta, u=\chi$; i.e. we have

$$
(a, \ldots \chi \phi u, \phi+u, 1)^{2}=(a, \ldots \chi \phi, 1,0)^{2}(u-\theta)(u-\chi) ;
$$

or, what is the same thing, we have

$$
\begin{aligned}
1:-(\theta+\chi): \theta \chi & =(a, \ldots \chi \phi, 1,0)^{2}: 2(a, \ldots \chi \phi, 1,0 \gamma 0, \phi, 1):(a, \ldots \chi 0, \phi, 1)^{2} \\
& =a \phi^{2}+2 h \phi+b: 2\left(h \phi^{2}+\overline{b+g} \phi+f\right): b \phi^{2}+2 f \phi+c,
\end{aligned}
$$

giving $\phi^{2}: \phi: 1$ proportional to linear functions of $1, \theta+\chi, \theta \chi$, and therefore a quadric relation $(* X \theta \chi, \theta+\chi, 1)^{2}=0$, with coefficients which are not in general (a, b, c, f, g, h).

Suppose, however, that the coefficients have these values, or that the correspondence is

$$
(a, b, c, f, g, h \gamma \theta \chi, \theta+\chi, 1)^{2}=0,
$$

we must have

$$
\left(a, b, c, f, g, h \nmid a \phi^{2}+2 h \phi+b, \quad-2\left(h \phi^{2}+b+g \phi+f\right), \quad b \phi^{2}+2 f \phi+c\right)^{2}=0,
$$

that is,

$$
\left(a c+b^{2}+2 b g-4 f h\right)\left(a, b, c, f, g, h \gamma \phi^{2},-2 \phi, 1\right)^{2}=0,
$$

or, we have

$$
a c+b^{2}+2 b g-4 f h=0,
$$

as the condition in order that the symmetrical $(2,2)$ correspondence between θ and χ may be the same correspondence as that between θ and ϕ, or between ϕ and χ.

