573.

NOTE ON THE (2, 2) CORRESPONDENCE OF TWO VARIABLES.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. XII. (1873), pp. 197, 198.]

In connection with my paper "On the porism of the in-and-circumscribed polygon and the (2, 2) correspondence of points on a conic," Quar. Math. Jour., t. XI. (1871), pp. 83—91, [489], I remark that if (θ, ϕ) have a symmetrical (2, 2) correspondence, and also (ϕ, χ) the same symmetrical (2, 2) correspondence, then (θ, χ) will have a (not in general the same) symmetrical (2, 2) correspondence. In fact, to a given value θ there correspond, say the values ϕ_1, ϕ_2 of ϕ ; then to ϕ_1 correspond the values θ, χ_1 of χ (viz. one of the two values is $=\theta$), and to ϕ_2 the values θ, χ_2 of χ (viz. one of the values is here again $=\theta$); that is, to the given value θ there correspond the two values χ_1, χ_2 of χ ; and similarly to any value of χ there correspond two values of θ ; viz. to χ_1 the value θ and say θ_1 ; to χ_2 the value θ and say θ_2 ; that is, the correspondence of θ, χ is a (2, 2) correspondence and is symmetrical.

Analytically, if we have

 $(a, b, c, f, g, h \delta \theta \phi, \theta + \phi, 1)^2 = 0,$

and

 $(a, b, c, f, g, h)\phi\chi, \phi + \chi, 1)^2 = 0,$

then writing

 $(a, \dots \oint \phi u, \phi + u, 1)^2 = 0,$

the roots hereof are $u = \theta$, $u = \chi$; i.e. we have

 $(a, \dots (\phi u, \phi + u, 1)^2 = (a, \dots (\phi, 1, 0)^2 (u - \theta) (u - \chi);$

www.rcin.org.pl

573] NOTE ON THE (2, 2) CORRESPONDENCE OF TWO VARIABLES.

or, what is the same thing, we have

$$1 : -(\theta + \chi) : \theta \chi = (a, ... \not (\phi, 1, 0)^2 : 2 (a, ... \not (\phi, 1, 0 \not (0, \phi, 1)) : (a, ... \not (0, \phi, 1)^2)$$
$$= a\phi^2 + 2h\phi + b : 2 (h\phi^2 + b + g \phi + f) : b\phi^2 + 2f\phi + c,$$

95

giving $\phi^2: \phi: 1$ proportional to linear functions of 1, $\theta + \chi$, $\theta \chi$, and therefore a quadric relation $(* \chi \theta \chi, \theta + \chi, 1)^2 = 0$, with coefficients which are not in general (a, b, c, f, g, h).

Suppose, however, that the coefficients have these values, or that the correspondence is

$$(a, b, c, f, g, h) (\theta \chi, \theta + \chi, 1)^2 = 0,$$

we must have

(a, b, c, f, g,
$$h \sqrt[3]{a} \phi^2 + 2h\phi + b$$
, $-2(h\phi^2 + b + g\phi + f)$, $b\phi^2 + 2f\phi + c)^2 = 0$,

that is,

$$(ac + b^2 + 2bg - 4fh)(a, b, c, f, g, h)\phi^2, -2\phi, 1)^2 = 0,$$

or, we have

$$ac + b^2 + 2bg - 4fh = 0$$
,

as the condition in order that the symmetrical (2, 2) correspondence between θ and χ may be the same correspondence as that between θ and ϕ , or between ϕ and χ .