581.

ON A THEOREM IN ELLIPTIC MOTION.

[From the Monthly Notices of the Royal Astronomical Society, vol. xxxv. (1874-1875), pp. 337-339.]

Let a body move through apocentre between two opposite points of its orbit, say from the point P, eccentric anomaly u, to the point P^{\prime}, eccentric anomaly u^{\prime}, where

u, u^{\prime} are each positive, $u<\pi, u^{\prime}>\pi$. Taking the origin at the focus, and the axis of x in the direction through apocentre, then-

$$
\begin{array}{cll}
\text { Coordinates of } P \text { are } x=a(-\cos u+e), & y=a \sqrt{1-e^{2}} \sin u, \\
" \quad P^{\prime} \quad \# & x=a\left(-\cos u^{\prime}+e\right), & y=a \sqrt{1-e^{2}} \sin u^{\prime} ;
\end{array}
$$

whence, expressing that the points P, P^{\prime} are in a line with the focus,

$$
\sin u^{\prime}(-\cos u+e)-\sin u\left(-\cos u^{\prime}+e\right)=0,
$$

that is,

$$
\sin \left(u^{\prime}-u\right)=e\left(\sin u^{\prime}-\sin u\right),
$$

which is negative, viz. $u^{\prime}-u$ is $>\pi$.

The time of passage from P to P^{\prime} is

$$
\begin{aligned}
n t & =\left(u^{\prime}-e \sin u^{\prime}\right)-(u-e \sin u), \\
& =u^{\prime}-u-e\left(\sin u^{\prime}-\sin u\right), \\
& =u^{\prime}-u-\sin \left(u^{\prime}-u\right),
\end{aligned}
$$

which, $u^{\prime}-u$ being greater than π and $-\sin \left(u^{\prime}-u\right)$ positive, is greater than π; viz. the time of passage is greater than one-half the periodic time. Of course, if P and P^{\prime} are at pericentre and apocentre, the time of passage is equal one-half the periodic time.

The time of passage from P^{\prime} to P through the pericentre is

$$
n t=2 \pi-\left(u^{\prime}-u\right)+\sin \left(u^{\prime}-u\right),
$$

which is

$$
=2 \pi-\left(u^{\prime}-u\right)-\sin \left\{2 \pi-\left(u^{\prime}-u\right)\right\},
$$

where $2 \pi-\left(u^{\prime}-u\right),=\alpha$ suppose, is an angle $<\pi$. Writing, then

$$
n t=\alpha-\sin \alpha,
$$

and comparing with the known expression for the time in the case of a body falling directly towards the centre of force, we see that the time of passage from P^{\prime} to P through the pericentre, is equal to the time of falling directly towards the same centre of force from rest at the distance $2 a$ to the distance $a(1+\cos \alpha)$, where, as above $\alpha=2 \pi-\left(u^{\prime}-u\right), u^{\prime}-u$ being the difference of the eccentric anomalies at the two opposite points P, P^{\prime}. If $\alpha=\pi$, the times of passage are each $=\frac{\pi}{n}$, that is, one-half the periodic time.

The foregoing equation $\sin \left(u^{\prime}-u\right)=e\left(\sin u^{\prime}-\sin u\right)$ gives obviously

$$
\cos \frac{1}{2}\left(u^{\prime}-u\right)=e \cos \frac{1}{2}\left(u^{\prime}+u\right) ;
$$

that is,

$$
1+\tan \frac{1}{2} u \tan \frac{1}{2} u^{\prime}=e\left(1-\tan \frac{1}{2} u \tan \frac{1}{2} u^{\prime}\right),
$$

or,

$$
-\tan \frac{1}{2} u \tan \frac{1}{2} u^{\prime}=\frac{1-e}{1+e}
$$

(in the figure $\tan \frac{1}{2} u$ is positive, $\tan \frac{1}{2} u^{\prime}$ negative); and we thence obtain further

$$
\begin{aligned}
& \sin \frac{1}{2}\left(u^{\prime}-u\right)=\cos \frac{1}{2} u^{\prime} \cos \frac{1}{2} u\left(\tan \frac{1}{2} u^{\prime}-\tan \frac{1}{2} u\right), \\
& \sin \frac{1}{2}\left(u^{\prime}+u\right)=\cos \frac{1}{2} u^{\prime} \cos \frac{1}{2} u\left(\tan \frac{1}{2} u^{\prime}+\tan \frac{1}{2} u\right), \\
& \cos \frac{1}{2}\left(u^{\prime}-u\right)=\cos \frac{1}{2} u^{\prime} \cos \frac{1}{2} u \cdot \frac{2 e}{1+e}, \\
& \cos \frac{1}{2}\left(u^{\prime}+u\right)=\cos \frac{1}{2} u^{\prime} \cos \frac{1}{2} u \cdot \frac{2}{1+e},
\end{aligned}
$$

and thence also

$$
\begin{aligned}
\cos u+\cos u^{\prime} & =2 \cos \frac{1}{2}\left(u^{\prime}+u\right) \cos \frac{1}{2}\left(u^{\prime}-u\right) \\
& =\cos ^{2} \frac{1}{2} u^{\prime} \cos ^{2} \frac{1}{2} u \cdot \frac{8 e}{(1+e)^{2}}
\end{aligned}
$$

But we have

$$
1+\cos \left(u^{\prime}-u\right)=2 \cos ^{2} \frac{1}{2}\left(u^{\prime}-u\right)=\cos ^{2} \frac{1}{2} u^{\prime} \cos ^{2} \frac{1}{2} u \cdot \frac{8 e^{2}}{(1+e)^{2}}
$$

or, comparing with the last equation,

$$
1+\cos \left(u^{\prime}-u\right)=e\left(\cos u+\cos u^{\prime}\right)
$$

or, what is the same thing,

$$
1-\cos \left(u^{\prime}-u\right)=\left(1-e \cos u^{\prime}\right)+(1-e \cos u)
$$

and in like manner,

$$
1+\cos \left(u^{\prime}+u\right)=2 \cos ^{2} \frac{1}{2}\left(u^{\prime}+u\right)=\cos ^{2} \frac{1}{2} u^{\prime} \cdot \cos ^{2} \frac{1}{2} u \frac{8}{(1+e)^{2}}
$$

or, comparing with the same equation,

$$
1+\cos \left(u^{\prime}+u\right)=\frac{1}{e}\left(\cos u+\cos u^{\prime}\right):
$$

which are formulæ corresponding with the original equation

$$
\sin \left(u^{\prime}-u\right)=e\left(\sin u^{\prime}-\sin u\right) .
$$

C. IX.

