584.

ADDITION TO PROF. R. S. BALL'S PAPER, "NOTE ON A TRANSFORMATION OF LAGRANGE'S EQUATIONS OF MOTION IN GENERALISED COORDINATES, WHICH IS CONVENIENT IN PHYSICAL ASTRONOMY.'
[From the Monthly Notices of the Royal Astronomical Society, vol. xxxvil. (1876-1877), pp. 269-271.]

The formulæ may be established in a somewhat different way, as follows:Consider the masses M_{1}, M_{2}, \ldots.
Let X_{1}, Y_{1}, Z_{1} be the coordinates (in reference to a fixed origin and axes) of the C.G. of M_{1};
x_{1}, y_{1}, z_{1} the coordinates (in reference to a parallel set of axes through the c.G. of M_{1}) of an element m_{1} of the mass M_{1}, and similarly for the masses M_{2}, \ldots; the coordinates $\left(X_{1}, Y_{1}, Z_{1}\right),\left(X_{2}, Y_{2}, Z_{2}\right), \ldots$ all belonging to the same origin and axes;

And let \dot{X}_{1}, \&c. denote the derived functions $\frac{d X_{1}}{d t}, \& c$. .
We have

$$
\begin{aligned}
T= & S \frac{1}{2} m_{1}\left[\left(\dot{X}_{1}+\dot{x}_{1}\right)^{2}+\left(\dot{Y}_{1}+\dot{y}_{1}\right)^{2}+\left(\dot{Z}_{1}+\dot{y}_{1}\right)^{2}\right] \\
& +S \frac{1}{2} m_{2}\left[\left(\dot{X}_{2}+\dot{x}_{2}\right)^{2}+\left(\dot{Y}_{2}+\dot{y}_{2}\right)^{2}+\left(\dot{Z}_{2}+\dot{Z}_{2}\right)^{2}\right]
\end{aligned}
$$

or since $S m_{1} x_{1}=0$, \&c., and therefore also $S m_{1} \dot{x}_{1}=0$, \&c., this is

$$
\left.\begin{array}{rl}
T= & \frac{1}{2} M_{1}\left(\dot{X}_{1}{ }^{2}+\dot{Y}_{1}{ }^{2}+\dot{Z}_{1}{ }^{2}\right) \\
& +S \frac{1}{2} m_{1}\left(\dot{x}_{1}{ }^{2}+\dot{y}_{1}{ }^{2}+\dot{z}_{1}^{2}\right) \\
& +\frac{1}{2} M_{2}\left(\dot{X}_{2}{ }^{2}+\dot{Y}_{2}{ }^{2}+\dot{Z}_{2}{ }^{2}\right)
\end{array}+S \frac{1}{2} m_{2}\left(\dot{x}_{2}^{2}+\dot{y}_{2}{ }^{2}+\dot{z}_{2}^{2}\right)\right) ~ \$
$$

Write u, v, w for the coordinates of the c.G. of the whole system: then

$$
\begin{aligned}
& M_{1} X_{1}+M_{2} X_{2}+\ldots=\left(M_{1}+M_{2} \ldots\right) u \\
& M_{1} Y_{1}+M_{2} Y_{2}+\ldots=\left(M_{1}+M_{2} \ldots\right) v, \\
& M_{1} Z_{1}+M_{2} Z_{2}+\ldots=\left(M_{1}+M_{2} \ldots\right) w
\end{aligned}
$$

and thence

$$
\begin{aligned}
& M_{1} \dot{X}_{1}+M_{2} \dot{X}_{2}+\ldots=\left(M_{1}+M_{2} \ldots\right) \dot{u}, \\
& M_{1} \dot{Y}_{1}+M_{2} \dot{Y}_{2}+\ldots=\left(M_{1}+M_{2} \ldots\right) \dot{v}, \\
& M_{1} \dot{Z}_{1}+M_{2} \dot{Z}_{2}+\ldots=\left(M_{1}+M_{2} \ldots\right) \dot{w} ;
\end{aligned}
$$

and thence

$$
\begin{aligned}
T-\frac{1}{2}\left(M_{1}\right. & \left.+M_{2}+\ldots\right)\left(\dot{u}^{2}+\dot{v}^{2}+\dot{w}^{2}\right) \\
& =\frac{1}{M_{1}+M_{2} \ldots}\left\{M_{1} M_{2}\left[\left(\dot{X}_{1}-\dot{X}_{2}\right)^{2}+\left(\dot{Y}_{1}-\dot{Y}_{2}\right)^{2}+\left(\dot{Z}_{1}-\dot{Z}_{2}\right)^{2}\right]\right\} \\
& \vdots \\
& +S \frac{1}{2} m_{1}\left(\dot{x}_{1}^{2}+\dot{y}_{1}^{2}+\dot{z}_{1}^{2}\right) \\
& +S \frac{1}{2} m_{2}\left(\dot{x}_{2}^{2}+\dot{y}_{2}^{2}+\dot{z}_{2}^{2}\right)
\end{aligned}
$$

or, representing the function on the right-hand side by $T^{\prime \prime}$, this is

$$
T=\frac{1}{2}\left(M_{1}+M_{2}+\ldots\right)\left(\dot{u}_{2}+\dot{v}_{2}+\dot{w}_{2}\right)+T^{\prime} \ldots,=T_{0}+T^{\prime}
$$

Suppose the positions are determined by means of the $6 n$ coordinates $((q))$; the equations of motion are each of them of the form

$$
\frac{d}{d t} \cdot \frac{d T_{0}}{d \dot{q}}-\frac{d T_{0}}{d q}+\frac{d}{d t} \cdot \frac{d T^{\prime}}{d \dot{q}}-\frac{d T^{\prime \prime}}{d q}=-\frac{d V}{d q} .
$$

But these admit of further reduction; the part in T_{0} depends upon three terms, such as

$$
\frac{d}{d t}\left(\dot{u} \frac{d \dot{u}}{d \dot{q}}\right)-\dot{u} \frac{d \dot{u}}{d q},=\frac{d \dot{u}}{d t} \frac{d \dot{u}}{d \dot{q}}+\dot{u}\left(\frac{d}{d t} \frac{d \dot{u}}{d \dot{q}}-\frac{d \dot{u}}{d q}\right) .
$$

But we have u a function of ((q)), and thence

$$
\frac{d \dot{u}}{d \dot{q}}=\frac{d u}{d q}, \text { or } \frac{d}{d t} \frac{d \dot{u}}{d \dot{q}}-\frac{d \dot{u}}{d q},=\frac{d}{d t} \frac{d u}{d q}-\frac{d \dot{u}}{d q},=0,
$$

or the term is simply

$$
=\frac{d \dot{u}}{d t} \frac{d \dot{u}}{d q} .
$$

The equation thus becomes

$$
\left(M_{1}+M_{2} \ldots\right)\left(\frac{d \dot{u}}{d t} \frac{d \dot{u}}{d \dot{q}}+\frac{d \dot{v}}{d t} \frac{d \dot{v}}{d \dot{q}}+\frac{d \dot{w}}{d t} \frac{d \dot{w}}{d \dot{q}}\right)+\frac{d}{d t} \frac{d T^{\prime}}{d \dot{q}}-\frac{d T^{\prime \prime}}{d q}=-\frac{d V}{d q} .
$$

Suppose now that T^{\prime}, V are functions of $6 n-3$ out of the $6 n$ coordinates $((q))$, and of the differential coefficients \dot{q} of the same $6 n-3$ coordinates, but are independent of the remaining three coordinates and of their differential coefficients; then, first, if q denotes any one of the three coordinates, the equation becomes

$$
\frac{d \dot{u}}{d t} \frac{d \dot{u}}{d \dot{q}}+\frac{d \dot{v}}{d t} \frac{d \dot{v}}{d \dot{q}}+\frac{d \dot{w}}{d t} \frac{d \dot{w}}{d \dot{q}}=0 ;
$$

or, better,

$$
\frac{d \dot{u}}{d t} \frac{d u}{d q}+\frac{d \dot{v}}{d t} \frac{d v}{d q}+\frac{d \dot{w}}{d t} \frac{d w}{d q}=0 ;
$$

and the three equations of this form give

$$
\frac{d \dot{u}}{d t}=0, \quad \frac{d \dot{v}}{d t}=0, \quad \frac{d \dot{w}}{d t}=0,
$$

viz. these are the equations for the conservation of the motion of the centre of gravity.

And this being so, then, if q now denotes any one of the $6 n-3$ coordinates, each of the remaining equations assumes the form

$$
\frac{d}{d t} \cdot \frac{d T^{\prime \prime}}{d \dot{q}}-\frac{d T^{\prime \prime}}{d q}=-\frac{d V}{d q}
$$

viz. we have thus $6 n-3$ equations for the relative motion of the bodies of the system.

