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Qualitative analysis of propagation of isothermal and adiabatic 
acceleration waves in the range of finite deformations 

Notations 

NGUYEN HUU VIEM (HANOI)(*) 

ON THE BASIS of constitutive equations of metallic isotropic elastic-plastic bodies, motion of 
a second order discontinuity surface in an infinite space is subject to a qualitative analysis 
in a local approach. Propagation velocities of isothermal and adiabatic waves (plastic, loading 
and unloading wave fronts) are compared with the corresponding elastic wave velocities. 
In this manner, the analysis of acceleration waves given by Mandel is generalized to the case 
of finite deformations. 

Na podstawie r6wnan konstytutywnych dla metalicznych izotropowych cial sp~zysto-plastycz
nych przedstawiono badania jakosciowe ruchu powierzchni nieci~glosci drugiego r~du w nie
skonczonej przestrzeni, w aspekcie lokalnym. Por6wnano pr~dko8ci rozprzestrzeniania si~ fat 
izotermicznych i adiabatycznych (fal plastycznych, front6w fal obci~renia i odci~nia), z p~
kosciami odpowiednich fal spr~zystych. Uog6lniono w ten spos6b rozwafania nad ana~ fat 
przyspieszenia podane przez J. Mandela na przypadek skonczonych deformacji. 

Ha OCHOBe onpege.IDIIOIIUIX ypaBHemm ,1VU1 M~eCKHX H30TpOIIHbiX ynpyro-IIJiaCTH
lleCI<HX TeJI npegcraaneHbi I<alleCTBeHHbie HCCJiegoaamm gaiDKeHHH noaepXHOCTH paapbiB8 
BTOporo nopHro<a a 6ecKoHel!HoM npoCTpaHCTae, B JIOKilJILHOM acneKTe. CpaaHeHbi CKOpoCTH 
pacnpocrpaHeHHH H30TepMHtleCKHX H ~a6aTHl!ecKHX BOJIH (IIJiaCTHlleCKHX BOJIH, <l>poHTOB 
BOJIH Harpy3KH H paarpySKH) CO CKOpOCTHMH COOTBeTCTBYJOIIUIX ynpyrnx BOJIH. TaKHM 00• 
paaoM o6o6~eHbi paccy>K.D;eHHH no aHaJIHay BOJIH .yCKopeHHH, npuaegeBHbie ,ll>K. ~eneM, 
uaCJI}'ll8ib<oHellllbiX ge<l>opMaz.urlf. 

A®B A.,BJ or A.,JBm•• 
A· 8 A.,B, or A.llBIJo 

A8 A.,JBJ or A.,JtiBtr. 
tr A Au, 

1 unit tensor, 
1 

A A-J(trA)l, 

T 
A transpose of a tensor 

1. Introduction 

A MOVING surface of discontinuity of field functions, its propagation velocity depending 
on the nonlinear properties of the material, is called a wave. Let us consider the acceler· 
ation waves. 

(*) At present a visiting research associate at the Institute of Fundamental Technological Research. 
Warsaw. 
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Propagation of the second order discontinuity in a three-dimensional, unbounded, 
elastic-plastic medium was considered originally in a paper by MANDEL [5], who investi
gated the motion of the discontinuity surface in the local sense: the speed was determined 
at an arbitrary point and in a given direction normal to the surface, on the basis of the 
HADAMARD Compatibility equations [4]. The paper was generalized by TING [13] who 
determined the character of the discontinuity vector and the form of the transport equa
tion. Assuming certain particular forms of the constitutive equations, RANIECKI [11] and 
W. K. NowACKI [8] investigated the problem of propagation of acceleration waves in 
metals and soils. All the approaches mentioned above apply to small deformations. 

The first papers dealing with the problem of wave propagation at finite deformations 
appeared in the seventies: BALABAN eta/. [1], D'EscATHA [2], PIAU [9, 10]. Papers of this 
kind are usually aimed at determining the relations between the velocities of elastic 
and plastic waves, waves of loading and unloading. In some of the papers, variations in 
amplitudes of such waves were considered. GUELIN and NowACKI [3] studied the propa
gation velocity of acceleration waves in an elastic-plastic medium with a perfect material 
hysteresis. 

In the present paper, velocities of such waves in isothermal and adiabatic processes 
will be studied on the basis of the constitutive relations presented in [I 2, 7]; the relations 
are derived from Mandel's theory of elastic-plastic materials [6], logarithmic elastic strain 
measure being assumed as one of the fundamental state parameters. They describe the 
finite deformations of the medium. Let us start with a short presentation of the fundamen
tal equations. 

2. Fundamental equations 

In the case of metallic, isotropic, elastic-plastic materials, the following equations in 
Eulerian description are used under certain well-grounded assumptions [12, 7]: 

(2.1) ¥ = LD- _L (iii· D)m, 
H 

where 

(]kk 
Kr = {J(K- p); p = - -- mean pressure, 

3 

K- bulk modulus, p..- Lame constant, :f = -t--w-r+-rw- Jaumann derivative of the 
stress tensor T, 't' = {Jaa- Cauchy stress tensor, {J = eo/(!, (!o and (! are the respective 
densities in the reference configuration and the actual configuration, according to the 
theory of MANDEL [6]. 

1 T 
D = 2 (grad v +grad v), v -velocity, 

1 T 
w = 2 (gradv-gradv). 
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The yield condition is assumed in the following form 

(2.2) f("i, 0, a) = 0, 

where f is a normed function, so that 

(2.3) aJ - - o a"i = m' tr m = ' m·m= 

0 is the absolute temperature, IX is the harde\}ing parameter (power of plastic strain in 
this case). 

The hardening function H for an isothermal process has the form 

(2.4) H 1 = -1-(~+1) 2p, 2p, 
where aJ h = --('r·iii) a a 

and for an adiabatic process 

(2.5) H• = 2~ {;,. +l+q,mo). 

Here q4 is the thermal coefficient of energy dissipation 

(2.6) 
1-n 

qd = --(m·i), eo C. 

dcp(a) 
n =eo da 

rp stored energy per unit mass {which may be measured experimentally). In most metals n 
takes the values between 0.02 and 0.1. c. is the specific heat at constant deformation, 

me = - 2~ ~~ - thermal coefficient of softening. 

Equation (2.1) describes both the isothermal and adiabatic processes; the difference 
between them consists in the fact that H 1 =F H", if certain minor coupling effects are dis
regarded (heat of elastic deformation and thermal expansion due to the dissipation energy). 

(2.7) . { 1 ]= 
0 

if f = 0 

if f < 0 

and m·D ~ 0, 

or f = 0 and m · D < 0. 

These equations, together with the equations of continuity, motion, temperature and 
evolution, represent a closed system of equations for the following unknowns: {J, -r11 , 

v, 0, IX (cf. [7]); they all are functions ofx and t. 

3. Qualitative analysis of acceleration wave velocity 

In elastic-plastic media the four types of acceleration waves mentioned above may 
propagate, depending on the state of the medium in front of and behind the wave. The 
propagation of waves may be analyzed in the space, that is in Eulerian coordinates, or 
with respect to the material, that is in Lagrangean coordinates. However, in order to 
obtain the simplest results, let us assume the material configuration at instant t as the 
reference configuration. It means that the motion of the wave in the time interval (t, t+dt) 
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is referred to the material particles at instant t. The following relation between the veloci
ties holds true 

(3.1) 

Here W is the wave velocity (in space), Dis the local velocity (with respect to the material 
at timet), vis the unit vector normal to the discontinuity surfaceS. 

In Eulerian coordinates, if y(x, t) remains continuous at passing through S but its 
derivatives are discontinuous, there exists such r that 

(3.2) [y,,] =Tv, [y,,] = -rw, [y] = -rD, 

where [A] denotes the jump of A, y. 1 = ;;, , and 

a, 
i'.r = Tt' y = i'. +y,,v,. 

Owing to the compatibility conditions, we obtain 

(3.3) [y. ,] = - ~ [y]. 

a) Isothermal wave 

In the isothermal plasticity it is assumed that the temperature is constant and equal 
to 80 • Isothermal waves represent a certain idealisation of the actual wave processes pro
duced by the impact at the surface of elastic-plastic bodies. Let us now consider the propa
gation of isothermal acceleration waves in an infinite three-dimensional elastic-plastic 
material, and apply the method proposed by MANDEL [5]. 

In the case of acceleration waves, at passing across S, the functions p, -r11, v, are con
tinuous, but their first derivatives with respect to time and x suffer jump discontinuities. 

The equations of continuity and motion assume now the forms 

(3.4) 

( ) 1 p . 3.5 Tu. t -7f Tu ,, = f!o'V1 • 

Taking into account Eqs. (3.2), (3.3) and the formula for derivatives ¥, Eqs. (3.4), 
(3.5) are reduced to the single equation 

(3.6) .Q(¥11)Pt + ~ (Tt)TmjP;Pm + ~ (Vm] TmjPIPi 

+ ~ £vm]v1v,-r,m- ~ [v1]-r,mPtPm+eoD2 [v1] = 0. 

(I) Elastic waves. Let the regions 1 (in front of the wave) and 2 (behind the wave) be 
elastic. From Eq. (2.1) it follows that 

(3.7) 

Substitution of Eq. (3.7) into (3.6) yields 

('3.8) (Q5k>(v)-eD2 ~J")[v"1 = o, 
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where Q~:> is the so-called elastic acoustic tensor 

> e( 1 1 1 1 ) (3.9) QS: = eo Lt)klVtVl- 2 't'mjVkVm- 2 't'kjVtVi - 2 T'tkVtVJ + 2 't'tmVtVm ~Jk • 

Under the assumption that the elastic distortions were small, it was shown in [7] that 
tensor Q~:> was symmetric and positive definite. Hence, for each direction v normal to 
surface S, there exist three possible acceleration wave velocities; they fulfill the following 

relations 

(3.10) 

Here Qf ~ Qi1 ~ Qf11 are the eigenvalues of tensor Q<e>, and 

(3.11) 

where nr are the elastic acceleration wave velocities. 
(if) Plastic waves· In this case, plastic state prevails at both sides of S. Combining Eqs. 

(2.1) and (3.6) we obtain 

(3.12) (Q~:>-eD2 ~Jk)[vk1 = o, 
where 

(3.13) 

1 
Q<P> = Q<e>- (3Hi (iiiv)®(iiiv) = Q<e> -ra®a, 

I 
r = (3Hi > 0, a= mv. 

It is seen from Eq. (3.12) that eD2 and [v] are the eigenvalues and eigenvectors of the 
tensor Q<P>, respectively. Non-trivial roots of the system (3.12) may exist, provided 

(3.14) FP(X) = det(Q<P>-Xt) = det(Q<e>-Xt-ra®a) = 0, 

where eD2 =X. 
Let us assume the coordinate axes to coincide with the principal axes of the tensor 

Q<e>; then it follows from Eq. (3.14) that 

(3.15) EP(X) = (Qj-X}(Qir-X)(Qfu-X} 

- r [ (Qi.-X) (Qiu- X)ai + (Qfu- X) (Qj- X) a~ 

+(Qf-X)(Qi.-X}a;] = 0. 

In view of the fact r > 0, Eq. (3.15) yields 

(3.16) FP(Qe) ~ 0, FP(Qj1) ~ 0, FP(Qf11) ~ 0, FP(- co) > 0. 

Figure 1 presents the diagram of function FP(X) satisfying the conditions (3.16). It is 
seen that the eigenvalues of tensor Q<P> satisfy the inequality 

(3.17) 

what implies that 

(3.18) 

where Df(i = 1, 2, 3) denote the plastic wave velocities. It cannot be seen from Eq. (3.18) 

12* 
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X .. ----~----~~~~----~~--~~--~~---
FIG. 1. 

whether the velocity .Qg is real or not; in the case when the tensor Q<P> is positive definite, 
we have .Qg > 0 and 

(3.19) 

The following conclusion may be drawn: 
For each direction v, the plastic wave velocities are not greater than the corresponding 

elastic wave velocities. 
(Uf) Unloading waves. This is the case when region 1 remains plastic, while region 2 is 

elastic, hence from Eq. (2.1) it follows that 

(3.20) ['V ] 'V<t> 'V<2> L [ ] 1 - - <t> 
TlJ = TIJ - TIJ = tJict v"·' - H' miJm",v"·', 

where superscripts (1) and (2) denote the respective values of the functions at both sides 
of S. Introducing the notation 

(3.21) 

we obtain, after simple transformations of Eqs. (3.20), (3.6) (3.21), 

(3.22) (Q~j>- e!J~1 f5J~cHvxl = - P~' iiiliv,E<•• 

if we assume (cf. MANDEL [5]) E< 2> = ~1:<1 >, so that 

(3.23) 

Consequently, Eqs. (3.21), (3.23) yield 

(3.24) 

Substituting expression (3.24) into Eq. (3.22) we obtain 

(1.25) 

where 

(Qjl-eD~lf5J") [v"l = o, 
Qjl = Q~:> - rul) a Ja'" 

1 
rul = ---=--- = QJ<P">+(r-rul)aJalc. 

PH1(1-~) 

In view of~ ~ 0, the inequality holds 0 < r01 ~ r. Comparison of Eqs. (3.25) and (3.13) 
reduces the considered case of unloading waves to the case of plastic waves. Mandel's 
procedure allows for drawing from Eq. (3.25) the conclusion that three possible unloading 
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Analysis of these cases yields the final scheme of wave propagation shown in Fig. 3. The 
loading wave is now seen to propagate at the velocities lying in the intervals shown in 
Fig. 3. In this manner, all Mandel's results are generalized to the case of metallic isotropic 
elastic-plastic bodies in the range of finite deformations. The preceding results may also 
be proved under the assumption that the differences E<1>- E< 2> are known, as in the paper 
[10] by PIAU, and not the ratio ~ = E< 2> jE< 1>. 

Let us now pass to adiabatic waves; the corresponding results concerning small de
formations are given in [11]. 

(b) Adiabatic waves 

Adiabatic waves represent also an extreme idealisation of actual wave processes. As 
mentioned before, once some minor coupling effects are disregarded, the difference be
tween the isothermal and adiabatic processes consists merely in the fact that the hardening 
function Hi must be replaced by the adiabatic function sa. Thus, the general scheme of 
propagation of adiabatic waves is similar to that found before. However, for given values 
ofv and~' the corresponding velocities are different. In addition, adiabatic waves are 
not homothermal and the temperature is propagated at a finite velocity. Let us now com
pare the isothermal and adiabatic wave velocities. 

Let us recall that in an isothermal process ( cf. [20]) 

Q<P> = Q<e< -ra®a where 1 
r = {JH'' 

while in the adiabatic case we obtain, using a similar approach, 

(3.30) 
A A 
Q<P> = Q<e>-ra®a, 

where 

A 1 
r = -- = --------

PH. p ( H'+ 2~ q,m.) (3.31) 

The yield limit in metals is known to decrease with increasing temperature, so that 
1 of 

off o8 > 0, and we have ms = - 2p, ae < 0, what implies that 

A 
(3.32) r > r. 

Taking into account Eqs. (3.13), (3.30) we conclude that the elastic wave velocities 
are identical in both processes. Let us now . pass to the remaining waves. The procedure 
is analogous with that applied in (a) and will not be considered in detail. Superscripts A 

refer to the adiabatic process. 
The propagation tensor for plastic, unloading and loading waves have the form: 

(3.33) Q<P) = Q<P>-{r-r)a®a, 

(3.34) 
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where 

(3.35) 

(3.36) 

where 

(3.37) 

Aul A 1 
r = r 1 _~ , 

Ald A ~ 
r = r ~-I , 

Since 1 > r, we have 1u• > ru1 and ~ld > r1
d (cf. Fig. 2); hence the adiabatic waves of 

other types are propagated at velocities smaller than the corresponding isothermal waves, 

(3.38) (i = 1,2, 3). 
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