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On approximate structures in mechanics 

w. NAGORKO (WARSZAWA) 

THE NOTION of approximate models considered in mechanics is defined in terms of mathematical 
objects, and the method is outlined of comparing the solutions of the boundary-value problems 
formulated for the approximate models with the unknown solution concerning the accurate 
model. ' 

W pracy formalizuje siC(, tzn. definiuje za porn~ obiekt6w matematycznych, rozwai:ane w me
chanice poji(Cie modelu przyblii:onego oraz podaje metod(( por6wnywania rozwi(lZan zagadnien 
brzegowych modeli przyblii:onych z nieznanym rozwi(lZaniem modelu 5cislego. 

B pa6oTe $opMaJIH3YeTCH, T.3H. onpe~errHeTC.H npH noMo~H MaTeMaTHlleCKHX o6»eKTOB, 
paccMaTpnsaeMoe a MexaHHKe, noH.HTHe npn6JIH>KeHHoH: Mo~eJIH, a TaK>Ke npnso~cH Me
TO~ cpaBHHBaHHH pemeHHH KpaeBbiX 3a~aq npH6JIH>KeHHbiX MO~eJieH C HeH3BeCTHbiM pe
meHHeM TO~OH MO~eJIH. 

1. Introduction 

THE NOTION' of models of real bodies are frequently used in mechanics, cf. [13, 15]. Vatious 
problems are then formulated for such models (e.g. the boundary value problems [12, 16]), 
and the corresponding solutions are sought for. 

Some of the real body models are called approximate (or simplified), e.g. [16]. J:'hese 
models are approximate in comparison to other models called accurate or exact; the 
shells may serve as an example of such models which approximate the model of a three
dimensional body. 

Using the above notions of the accurate and approximate models and the solution 
of the problem, let us formulate the following questions: 

(i) How the solutions of the approximate model problems should be compared with 
the unknown solutions concerning the accurate models? 

(ii) How a prescribed model may be found to approximate a given accurate model? 
This paper is aimed at defining the notion of an approximate model in terms of certain 

mathematical objects so as to enable us to answer the questions posed above. 
Not all models used in mechanics will be dealt. with in this paper. The considerations 

will be confined to such models which enable the separation of structures in the s~nse 
of relation systems [2, 4] having the form 

(1.1) (X, F, M). 

Here X, Fare sets, and M is a multifunction(!) 

(1.2) 

( 1) Notation I:X--+ Y implies that I is defined on X, and hence dom I may differ from X. 
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444 w. NAGORKO 

in what follows, only the structures of the form (I. i) are considered. The choice of such 
structures is connected with the following problem: 

Problem (a) 

Let fo be a fixed element of F. Determine the set of such x0 EX that 

(1.3) / 0 E M(x0 ). 

Problem (a) represents the motivation of assuming the object of our investigation 
in the form of the relation system (1.1). Such structures may thus be"'called the structures 
of problems (a). 

Numerous problems of the form (1.3) are being considered in mechanics; obviously, 
these are not all the structures of the problems of mechanics. 

The set of structures (1.1) will be denoted by 9Jt Each element x 0 satisfying Eq. (1.3) 
will be called a solution corresponding to / 0 • Evidently, the solution of problem (a) consti
tutes the set of all solutions corresponding to / 0 • 

The relations between the theory, model and structure are not analyzed here. The 
corresponding remarks may be found in [10]. 

2. Examples of structures 

TJte most frequently considered structures (1.1) have the form (X, F, M) in which 
every multifunction M assignes to each x E domM a single-element set M(x) = {/} and 
f E F. Hence the multifunction determines a certain operator A : dom M -+ F such that 
A(x) = f <=> {f} = M(x). Structure (X, F, M) will be called the operator structure. 
An example of such a structure is the structure of boundary value problems of continuum 
mechanics. 

Let Q be a regular domain in R 3 , and T- an interval {t0 , t 1) c R1
• Denote by X 

the set of all vector functions x: Q x T-+ R 3 of class C2 in Q x T and of class C1 in Q x T. 

In order to determine the domain of operator A let us ~enote by D a certain non-empty 
set X such that all elements D for each fixed t E T are inversible. Let 

(2.1) domA = {x; X= i o d, i E /,dE D}, 

where I is the set of all isomeries of space R 3 reduced to codom d. 
Also considered will be sets dom A of the form 

(2.2) domA = {x; X= i o (d-1), i E /,dE D}, 

whe.re 1 is the identity in X. 
Let us define space F as a Cartesian product B x P x Vx V, where B, P are spaces 

of almost continuous vector functions b: Q x r -+ R 3
, p: a 1 Q x r -+ R 3 , U = { u; u = 

= x/a2.o x T} and V is a space of continuous functions v: Q x {t0 } -+ R 3
• Elements of F 

are denoted by (b,p, u, w, v). It will be assumed that 81 !Juo2 Q = (JQ, o1 !Jno 2 Q = 0. 
In order to determine the operator A let us assume _that the operator. T:X-+ S is 

given, where S is a space of symmetric tensor functions s: Q x T -+ R3 x 3 
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(2.3) s = T(x) 

and that a scalar function (!: Q x r ..... R 1 is also prescribed. 

Operator A is assumed in the form 

(2.4) A(x) = {divT(x)-ex, T(x) la tDXTn, xla2D XH xiDx{to}' xiDx{to}}, 

where the vector function n: a 1 Q x r ..... R 3 equals the outer unit vector normal to a 1Q. 

The structure described above may be used in solving the boundary value problems 

of continuum dynamics by assuming that Q -reference configuration of the material 

medium, r- time interval, x E domA given by Eq. (2.1)- deformation, x E domA 

given by Eq. (2.2)- displacement, -bE B- body forces, pEP- surface loads, S
space of stresses, s E S- Piola-Kirchhoff stress tensor, (!-mass density, Eqs. (2.4)
constitutive equations. 

The structure specified here is general enough, though it does not embrace all possible 

descriptions of continua. Several modifications are possible: instead of the en spaces, 

spaces Hn may be considered, operator A may be replaced with the multifunction deter

mined by the Lagrange functional, etc. 
In addition to the dynamic structures, static structures are also considered. In the 

particular case when the operator T is defined in the form 

(2.6) 
1 

T(x) = 2 C(Vx+ Vxr), 

where 

c = (Ctjkl), cijkl = cjikl = cklij = c,kij, i,j, k, 1 = 1, 2, 3 

are the scalar functions defined in Q (elastic constants), problem (1.3) for the operator 

(2.1) consists in determining such x E domA that 

1 
s = 2 C(Vx+Vxr), 

(2.7) (divs-ex, sla tD xt;n) = (b,p), 

XIE2!JXT = U, Xit=lo = W, Xit=lo = V. 

Let us consider another structure. Let X be the function space 

xiX :n x r ..... R3 , ex = 1 , 2, ... , N, 

where n is a regular region in R 2 , and r - time interval in R1
• Functions XIX are assumed 

to be of the class C 2 in n x r, and of class C 1 in n x r. 
Let the space F be the product B x P x Ux Vx V of the functions 

biX:nx r ..... R 3 , 

piX: aln X r ..... R3, 

(2.8) uiX: a2n x r ..... R 3 , 

wiX: n x {t0 } ..... R 3 , 

viX:nx {t0 } ..... R3 , ex = 1,2, ... , N. 
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In order to determine A let us assume that the regular functionals are given G: X x 
x X--. R1, ":X x X--. R1, their domains satisfying the conditions (.x1, ~) E dom G <=> ~ = 
= · V.x1, (.x1, ~) E dom" <=> x1" = ~. 

Let us assume 

[ 
. oG c(J a a" a" 

(2.9) A(.xoc) = dtv avxx - axx - Tt axa + axx' 

where n is the unit outer vector normal to a 1 n. 
Applicability of the structure to solving the boundary value problems of solid body 

mec~anics depends on the method of interpretation of XX as the functions describing the 
motion, functionals G and " as the functionals describing the internal and kinetic energies 
of the body, and elements ofF as the functions describing the body forces, surface loads 
and the initial and boundary conditions. Such an interpretation will be presented in Sect. 7. 

3. Formal considerations 

Let us procede now according to the following scheme. Let the two structures m = 
= (X, F, M) and n = ( Y, G, N) be given. Structure m is e~tended to include new elemefl.t§ 
making it possible to define the multifunction Me which assignes to the unknown accurate 
solution the elements "close" to it (in a definite sense). 

The set of structures in which the definition of such a multifunction Me is possible 
will be denoted by IDle. Furthermore, the structure me E IDle (structure m E ID1 extended 
to include Me) and the structure n E ID1 are interrelated by the operators 

(]J: Y--. domMe, IJI:codomMe--. G, 

so as to make, for instance, space Y- the space of generalized coordinates for X, and 
G- the space . of generalized forces for F . (Fig. 1). 

x _l:!__r 

/ ME """ . . :r N c~i:H, 
y G 

FIG. 1. 

The system (me, n, (]J, IJ'), me E IDle, n E 9J1 satisfying certain conditions (to be 
determined later) will be called the app~oximate structure. It may also be expressed in the 
form: "n approximates the structure me''. The set of approximate structures will be denoted 
by ID1a. 1 
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Before passing to more precise definition of the notion of approximate structures, 
let us decide that the domain of our formal considerations [3] is the system 

(3.1) (illl, illlu illla). 

It is the relation methasystem [2] for the structures belonging to IDl. The questions (i), 
(ii) of Sect. I may now be formulated in the form: 

(i') Let the structure n approximate m8 • How the solutions of the problems n should 
be compared with the unknown solution of the structure m8 ? 

(ii') How to verify whether the given structure n E 9R approximates the given structure 
mE illl? 

In the following sections the sets IDls, 9Ra of the system (3.1) will be defined. 

4. The "closeness" operator 

Let u& now define a certain functional e determining the "closeness" within the product 
Xx F. Let us fix two non-empty subsets X 0 c domM, X c domM. 

Moreover, let the operator 

(4.1) w:x~z 

be given which, with X 0 E dom W, assignes to the unknown solution x 0 E X 0 the elements 
from a certain space Z. The role of the space Z characterizing the unknown solution x 0 

will be explained later(l) 

Operator W will be assumed to satisfy the condition 

· (4.2) (Vfo E U M(x0 ))[(xl :1= x2, x1 E M-1(/0), x 2 E M- 1(/0)) ~(W(xl) :1= W(x2 ))] • . 
XoEXo . 

Denote 

R = {(zo,fo); (3x0 E X0 )[z0 = W(xo),/0 E M(Xo)]}. 

Let the sets X and F be the metric spaces, and let us · defi~e the functional 

(4.3) t):Xx Z ~if+ 

fulfilling the conditions 

XxZ0 c domt), Z 0 = W(X0 ), 

(4.4) (Vx0 EX0)(Vx EX) [e(.X, xo) ~ t)(x, z0), z0 = W(x0 ), (x0 EX~ t)(xo, zo) = 0)]. 

Functional (4.3) is used to estimate the unknown distance e, (x, x 0 )_(x0 being unknown) 
within the space X. 

Spaces X and F were assumed to be metric, hence the metric in the Cartesian product 
X x F may also be defined by assuming, for instance, 

(4.5) !?xxF[(xl,_h), (X2,f2)] = max(ex(Xt, X2), !?F(_h,/2)). 

The metric (4.5) may be estimated from above by the functi<;mal 

e:XxFxZxF~ R1 

(2) Elements of Z may be e.g. the forces cot responding to the solution x0 , the statically admissible 
stresses etc. 
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defined as 

(4.6) s(x,f, Zo,fo) = max(d(x, zo), (!F(f,fo)). 

Hence the functional e bounds the unknown distance between the solution x 0 corresponding 
to fo and an arbitrary pair (x ,f), x E i, f E M(x). 

Let us now present some examples of functionals e. 
Let (X, F, L) be a linear structure, i.e. such in which operator L is linear e) 

(4.7) L E (X-+ F). 

It will be moreover assumed that operator (4.7) is bounded and inversible, while X, F 
are Banach spaces. If / 0 is fixed like before, then x0 = L -t (/0). Let us assume that Z = F 
and W= L. · 

In order to determine the functional (4.3) let us observe that from the definition of the 
operator norm we have 

llx-Xo/1 ~ IIL- 1111/L(x)-/oll, 

so it may be assumed [9] that 

d(x,fo) = m//L(x)-fo/1, 

where m is given and m ~ IIL-1//. This functional is defined in the entire space Xx F 
and does not explicitly depend on the unknown solution x 0 corresponding to fo. 

Functional (4.6) will be of the form 

(4:8) s(x,L(x),fo,fo) = mo//L(x)-fo/1, 

where m0 ~ max(m1, m1), m ~ 1/L-1/I, and m1 is the weight of the norm in the space F. 
Another example of the functional e is defined in the Hilbert spaces. (11]. 
Let jn X for each Xo E Xo be determined two linear manifolds x1' x2 such that for all 

x 1 EX1 and x 2 EX2 

(4.9) 

Each element x EX may uniquely . be represented in the form x = (x1 +x2)/2, where 
x 1 , x 2 satisfy Eq. (4.9). 

Equation (4.9) is equivalent to the equation 

1 
(4.10) llx-xoll = 2llx1 -x2ll 

with x = (x1 +x2)/2. 
Let Z = 2xxx and let the operator W have the form 

W(x0 ) = (x1 , x 2) = z0 , 

where x0 is fixed and x 0 , x 1 , x 2 satisfy Eqs. (4.9). 
Making use of Eq. (4.10), functional (4.3) will be defined as 

1 
d(x, zo) = 2llx1 -x2//, 

where (x1 , x2) = z0 and x = (x1 +x2)/2. 

(
5

) Notation I e (X-+ Y) means that I is defined in the entire X. 
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Functional s may then be assumed to have the form 

(4.11) 

and 

Space X may be decomposed into manifolds xl' x2 without the knowledge of Xo. 
An example of such decomposition in linear elasticity (into the statically and kinematically 
admissible stress spaces) is given in [14]. 

Let us consider the functional sin the operator structures (X, F, A) with the operator 
A= L*A 0 L, where the operators L:X--+ Y, A 0 :Y--+ Y* are given and F =X*. Operator 
L *: Y* --+ X* is conjugate to L. 

Assume L to be a linear, and A 0 - a strictly monotonic, coercive and potential operator. 
Potential A 0 is denoted by F. 

Making use of the a posteriori estimates for the norm in space X given in [1] we obtain 

(4.12) 
. 2 

IIX-Xoll ~ m (F(L(x))-<fo, x)+F*(y*)), 

where F* is the cOhjugate potential, m- coercivity constant, and y* satisfies the condi
tions 

y* E Yri = {y*; L * (y*) = fo } . 

Here fo = A(xo). 
Assume that space Z = F x Y* and operator W assign to x 0 the pairs (/0 , y6), where 

y~ is a fixed element of Y* (e.g. such that F*(Y~) = min F*(Y*)). 
y•eY~ 

Functional c5 is defined, in accordance with Eq. ( 4.12), as 

(4.13) c5(x,fo, YcD = 2_ (F(L(x))-<fo, x)+F*(y6)). 
m 

Two components in the functional (4.13) may be singled out: 

called the generalized potential energy, and 

J7k(y*) = F*(y*) 

playing the role of the complementary energy. 
Functional s is written in the form 

(4.14) e(x, A(x),f0 , y.;' .fo) = max(~ (V.(x,f0 )+ V.(y6), m,IIA(x)-foil)), 

m1 being the weight of the norm in X*. 
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S. The approximating multifunction 

Functional e will be used to define the multifunction M 8 

(5.1) 
in the form 

(z0 ,/0 ) E MB(x) <=> [(zo,fo) E R, x EX, 3jE M(x), e(x,/, z0 ,/0 ) E (e0 -a, e0 +a)] 

a being a fixed non-negative real number, and e0 = inf e(x, f, z0 ,/0). 

xeX 
/eM(x) 

Multifunction M8 will be called the-approximating multifunction. Structures (X, F, 
z, M, e) will be denoted by mB, mB ErolB. 

Let us observe that, in the particular case of a = 0, multifunction (5.1) asignes to 
a pair (z0 ,/0 ) the pairs (.X,/), x EX, 'j E M(x) according to the rule 

(5.2) e(x,j, zo,fo) = inf e(x,f, zo,fo) 
xeX / 

/eM(x) 

which is the minimization principle. 
Let us investigate the particular cases of principle (5.2). Assume the closeness potential 

e to be differentiable. The Gateaux derivative is denoted by o6 , the Frechet derivative
by op. 

Let the set X be defined by the condition 

(5.3) B(x) = 0, 

where B E (X--+ Q) and Q is a certain Banach space. 
If both B and e possess continuous Gateaux derivatives in the neighbourhood of a 

certain point x EX satisfying Eq. (5.2),jEA(x) and the image o6 B*(x):X--+ Q is closed, 
then, according to the Lagrange theorem [5] there exists a number A0 and a linear functional 
q* (called Lagrange multipliers) defined on Q (simultaneously non-vanishing) such that 

(5.4) Ao oae(x, A(x), zo,fo)+ [oaB(x)]*q* = 0, 

where [oaB(x)]* is conjugate to o6 B(x). 

Let us assume that in the operator structure (X, F, A) spaces X and F are the Hilbert 
spaces, operator A: X--+ F being differentiable. 

Assume the functional e in the form ( 4.8) 

(5.5) e(x, A(x),fo,J~) = miiA(x)-foW· 

Functional (5.5) is Frechet differentiable as a combination of the operator A (x)- fo 

and functional 11/11 2
• The derivative of A(x)- fo equals the operator opA(x), and the 

derivative op 11!11 2 ~ 2f since 

llf+hll-11!11 = 2(/, h)+ llhll 2
• 

Hence 

(5.6) 

Let now the .set X be defined by the condition (5.3); then Eq. (5.4) yields 

(5.7) 2A0 (A(x)-f0 , opA(x))F+ [oaB(x)]*q* = o. 
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Relation (5.7) holds true for all x EX; under additional conditions the relation may be 
reduced to the virtual works principle. 

To this end let us consider the structure of linear elasticity as given by Eqs. (2. 7). 
Operator B which determines the set X will be defined by the condition [18]. 

(5.8) hv(x, Vx) = · 0, v = 1, 2, ... , r. 

Here hv are functions of class C 2 in their arguments. 
According to [ 17], the vector field 6x E C 1 (Q) represents the virtual displacements 

provided 

(5.9) v = 1, 2, ... , r. 

The set of all virtual displacements for .X is denoted by V;. Taking into account Eqs. (5.7) 
and (5.9) and assuming A to be the inversible linear operator, the principle (5.7) may be 
written as 

In the case of virtual displacements relation (5.10) takes the form 

(5.11) (Vdx E V;)(2,l0 (L(x)-/0 , L(6))F = 0]. 

Let us now determine in X the scalar product(4
) in the form 

and in F-in the form 

Then we have 

(xi, x2) = J Ailk'xLx~. 1 dv 
n 

(L(x)-fo, L(x))F = J (T(x)-T(x0 ))Vxdv = J (T(x)Vx+divT(x0 )x)dv 
n n 

- J T(x0 )nxda = J T(x)Vxdv- J bxdv- J pxda. 
an n n an 

Making use of thi~ relation, Eq. (5.10) is transformed into virtual works principle 

(5.12) (Vdx E V;)f f T(x)V(dx)dv- f bdxdv- J pdxda = o] 
n n ~ 

equivalent to the perfect constraints principle 

(5.13) (Vdx E V;) r f r6xdv + f sdxda = o] 
n an 

with r = -b-divT(x), s = T(x)n-p. 
Let us now consider the closeness functional c in the form (4.14) with the condition 

_3_ (VP(x,fo)+ Vk(yci)) ~ mtllA(x)-foll . m 

(
4

) Space X is now the space of abstraction classes differing by rigid displacements. 
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Then we have 

(5.14) 

The complementary energy being independent of x, the principle (5.2) assumes the form 

(5.15) min Vp(x, fo), Vk(y6) = min Vk(y*). 
xeX y•eY~ 

Relation (5.15) expresses the principle of minimum potential and complementary energy. 

A similar expression (in the forrn of minimum potential and complementary energy) 

is obtained in the structure of linear elasticity with the closeness functional (4.11), [10]. 

6. Approximate structures 

Let us now return to the situation shown in Fig. I, i.e. to the case of two structures 

related by means of the operators f/> and lJ'. 

Due to the definition of multifunction M6 , the operators are defined as 

(6.1) f/>:Y-+XxF, lJI:ZxF-+G. 

Once the system (m8 n, f/>, lJ') satisfies the conditions 

0 =I R c dom lJ', codom lJ' c codomN, 

domN c domf/>, codomf/> c X, 
(6.2) 

(Vy E domf/>) [f/>(y) = (x,/),/E M(x)], 

{V(zo ,fo) E R)(3(x ,j) E fi>(N-l {lJ'(z0 ,f0 ) )) ) [(zo ,fo) E Me(x, /)] 

it will be called the approximate structure. The following problem may be formulated 

within the structure: 

Problem (a') 

Letf0 be a fixed element ofF, and x 0 - an unknown solution of Eq. (1.3) corresponding 

to fo. Determine such y E N- 1 (lJI(z0 ,f0)), with z0 = W(x0 ), that 

(6.3) (zo,fo) E Me(fl>(y)). 

Each element y fulfilling Eq. (6.3) will be called an approximate solution close to the 

accurate one x 0 • 

The approximate structure (m6 , n, f/>, lJ') may then be called the structure of problem 

a', and problem (6.3) may be said to approximate the problem (1.3). 

Let us n~w present the answers to the questions (i'), (ii') posed before. 

(i') The approximate solution, that is the solution of problem (a') in the approximate 

structure (ma = m
9

, n, f/>, lJ') is compared with the unknown solution of (a) in the struc

ture me by means of the functional c. 

In the case when two approximate ·structures are given, ma
1 

= (mB> n1, f/>1, lJ'1) 

and ma
1 

= (me, n2 , f/> 2 , lJ'2 ) and x 0 is- the unknown accurate solution corresponding 
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to [ 0 in the structure m6 , y 1 is an approximate solution in ma
1 

and y 2 -an approximate 

solution in m02 , and if 

(6.4) 

then it may be stated that y 1 is a better approximate solution than y 2 when compared 
with the unknown value of x 0 • 

An example of such comparison of solutions is found in the controlled discretization 

of elastic bodies [6, 7]. 
(ii') In order to learn whether the given structure n = ( Y, G, N) approximates the 

structure m
6 

= (X, F, Z, M 6 ) it should be verified if m;, n and the given (/> and '1' satisfy 

the conditions (6.2). 
In the case when only one operator (6.1) is given, the other one must satisfy the condi

tions (6.2). Namely, if: 
(a) operator(/> is given, '1' must fulfill the condition 

(6.5) g = 'l'(z0 ,/0 ) <=> (3(x,/) E cJ>{N- 1(g))) [(zo,fo) E Ms(x,/)]. 

If 

(V(z0 ,/o) E R)PP(zo,fo)-# 0] 

then the structure n approximates me (in the set R); 
(b) if operator '1' is given, (/> must fulfill the conditions 

(6.6) (x,]) = cJ>(y)<=>(3(z0 ,/0)E'l'- 1 (N(y)))[(zo,fo)EMe(x,/)]. 

If 

(V(zo,fo) E R)[cJ>(N- 1('l'(zo,fo))) -# 0] 
then the structure n approximates m8 (in the set R). 

An example of the approximate structure satisfying the above conditions is presented 
in the following section. 

7. Structures of layered bodies . 

The starting point is represented by the two-dimensional structure described in Sect. 2 
by the conditions (2.19). This structure will be combined with the structure of linear elas
ticity by constructing the operators (6.1). 

Let the r~gion Q, the reference configuration of a three-dimensional elastic body, 
be of the form n x (a, b), where the points belonging ton have coordinates zk, k = 1, 2, 
and the points (a, b) have the coordinate y. ', 

. Let us construct the set of surfaces na. E e' ex = 1 ' 2' ... ' I, I ~ 1' where 

(7.1) €J = {na.; na. = cp(Ilx {ycJ), a= Yo< y1 , < ... < y, = b}. 

Transformation cp occurring in Eq. (7.1) is the diffeomorphic transformation of region 
Q into the physical space. The surfaces na. uniquely divide the body into the subregions 
denoted by Qo c = 1, 2, .. , I, Qc = cp(n x (Ye-t, Yc)). Sets Qc will be called the layers. 

Assume the operator (/> in the form 

(7.2) x(z,y, t) = cJ>(qa.(z, t),y) = qa.(z, t)~a.(y), ex= 0, 1, ... , I 
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with q«(z, t) = x(z,yrz, t). Functions q« are here the generalized coordinates sought 
for which describe the motion of the separation surfaces ~rz, functions ~rz being known. 

The subdivision of the shell presented here may be treated as the process of discretiza
tion of an elastic body, the individual layers representing the finite elements De. However, 
contrary to that method, infinite number of nodal points is obtained here since they include 
not only the points Yrz but also all the points of the region n. Polynomials in y may serve· 
as examples of the functions ~rz. 

Let us consider lf> in the following form 

(7.3) x(z, y, t) = w1 (q«(z, t))yi, j = 0, 1, ... ,j0 , 

wi being known functions of the generalized coordinates. Functions (7.3) constitute a par
ticular case of internal constraints, [15, 18]. 

Since q« were defined as the deformations of the separation surfaces nrz, the following 
conditions should be satisfied. 

(7.4) 

Conditions (7.4) form a linear set of equations for the coefficients w1 • In the case ofj0 == 1,. 
Eq. (7.4) reduces to the Cramer system for wi which may easily and uniquely be solved 
provided the principal matri~ is not singular. The . solutions are 

(7.5) 

On substituting Eqs. (7.5) into (7.3) we obtain 

(7.6) x(z, y, t) = arzpy«qP(z, t). 

In the simplest case of the first degree polynomial functions, Eqs. (7.6) assume the form 

b-y y-a 
x(z,y, t) = -h-qo+-h-qt, 

where h = b-a. This is the case when no internal separation surfaces exist in the shell, 
i.e. e is the set of two (upper and lower) surfaces. 

Polynomials of higher degrees were considered in [8]. 
Let us now pass to the determinati~n of the operator occurring in Eq. (6.1). The pos

tulate of virtual works · principle (5.12) in linear elasticity yields [8] 
\ 

b 

(brz,Prz)ElJf(b,p)<=>brz = J eb~rzdY+P~rziy=a+P~cxiy=b' zEn, 
a 

(7.7) b 

Pa. = J P~a.dy, z Eon. 
a 

(ba., ea) and a 1 n = an were assumed as the only functions in the space F of the statical 
structure (2.8). 

The operator defined by Eq. (2.9) yields in the case of Eqs. (7.2) and (7.7) the following 
equations: 

(!a.p{p,q~,LL +(A+ p,)qf, LK)+ (A(!:p-(!pcx)qg,K_ ftf!:pq~ +bKa. = iKcx' 
(7.8) 

ftf2cxpqg,KK+(p,e~-Af2pcx)qtK-(2p,+A)f!:pqg+b3rz = i3cx, zEn, 
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oe 
oVqa. n = Pa., Z Eon. 

Here K, L = 1 , 2 and 
b 

e = J ee(V(~a.qa.))dy, 
a 

b 

(!a{J = f e~a.~pdy, 
a 

b 

e~p = f e~a~pdy, 
a 

b 

e~'p = f e~~~'pdy, 
a 

ln Eqs. (7.8) the magnitudes ba. are given by Eqs. (7.7), and 

. d 0" 0" 
'a. = ----;Jt oiJa - aqa' 

A 

8. Concluding remarks 

The subject of our considerations were the mathematical structures consisting of .two 

sets and multifunctions applied to solving the problems of mechanics in the form (1.3); 

the aim of our considerations consisted in answering the question when two structures 

m, n may be said to represent the solution and its approximation. This aim has been achieved 

by means of the notion of an approximate structure. 
The effectiveness of the proposed method depends on the definition of the closeness 

functional (4.6). In Sect. 4 certain examples of such constructions were presented for 

a broad class of structures (linear and defined in Hilbert and conjugate spaces). Also the 

postulated minimization principle (5.2) determines the effectiveness of the method depen

ding on the proper choice of minimization methods. 
In the paper s:uch cases were considered in which the closeness functional was differen

ti~ble (in the weak or strong se_nse) then it followed that (under some additional conditions) 

the principle (5.2) contains the virtual works principle, the principles of minimum of po

tential and complementary energies, and the principle of perfect constraints. The latter 

result is of particular importance in mechanics of the bodies with constraints since it 

may be utilized in proving that all structures built up on this basis (fulfilling certain addi

tional conditions) represent the approximation structures provided the closeness functional 

depends on the reaction forces. 
The theoretical considerations were illustrated by an example of the structure of multi

ayer bodies approximating the theory of linear elasticity. 
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