
Arch. Mech., 35, 4, pp. 541-457, Warszawa 1983 

BRIEF NOTES 

Temporal memory as a constitutive principle and its limitations 

W. KOSINSKI (WARSZAWA) and K. C. VALANIS (CINCINNATI) 

FoR VISCOPLASTIC materials instead of the relaxation property for the norm in a history space 
the assumption that during the infinitely long freeze of configuration a material reaches a limit 
state is introduced. This assumption turns out to imply the relaxation property and hence the 
fading memory of a material represented by any continuous response functional defined on the 
history space. The proof of this result is based on the theory of semi-groups of operators. 

IT IS QUITE natural to apply the general Coleman-Mizeltheory of materials with memory 
[1-3], restricted by the relaxation property (RP) for the norm of the history space, to 
viscoelasticity. For a viscoplastic material, however, RP cannot hold because it implies 
the so-called semi-elasticity in the sense of NOLL [4], which is incompatible with internal 
changes of the material undergoing viscoplastic deformations. In the previous paper [5] 
we gave a general characteristic of viscoplastic material~ distinguishing them from visco
elastic ones. In the present paper we drop RP since viscoplastic materials are investigated. 
Moreover, in the place of a Banach function space of the Kothe-Toeplitz type introduced 
by COLEMAN-MIZEL in [3] we are defining a more general history space ~. The response 
of a material with memory is given by a response continuous functional (operator) r: 
~ -+ 9i defining on m (or a cone of m) with values in a finite-dimensional inner product 
space 9l. 

History space 

We start with a nontrivial, nonnegative, sigma-finite regular Borel (i.e. Radon) measure 
p, on [0, oo) which has an atom at s = 0 and is absolutely continuous on (0, oo) with 
respect to the Lebesgue measure A. Let us consider the set "Y of all ,a-measurable functions 
(]> mapping R + : = [0, oo) into the normed space {V,., I · 1,.}. 

DEFINITION. By a history space we mean a Banach space {m, II· II} formed of equivalent 
classes of elements from "Y, such that (]> is equivalent to 'l' if (]>(s) = 'P(s), ,u- a.e., where 
the norm II · II on m has the following properties: 

a) each Cauchy sequence in m contains a subsequence which converges pointwise ,u
a.e. and its limit is the same as the limit of the whole sequence, 

b) the norm II· II is equivalent to II· II' defined by 11(]>11' := 1(]>(0)1,.+ l·lr(]>ll, where 
IJr{]> IJ r := IJ{]>X<o. cx:>)IJ and the space mr obtained from "Yr := {r(]>; r(]> = (]>l(o. ex:>) for 
some (J> E "Y} by identy.fing p,- almost equal elements of "Yr is a Banach space, 
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_ c) if !J E V,. and A is a p,-measurable bounded subset of R + then IIDX..t II < oo, where 

X..t is the characteristic function of the set A, 

d)_ for any G E R + the mappings ra and Ea given by 

JO if 0 < s ~ (/, -
(T'rtP}(s) := \rtP(s-(J) if C1 < s < 00, {

f/J(O) if 0 ~ s ~ (/, 

(EatP)(s) := tP(s-(J) if C1 ~ s < oo 

are well defined operators on ~r and ~' respectively, and moreover the set {'J'1 : G E R +} 
forms a strongly continuous semi-group of linear bounded operators on- ~r, 

e) each element of~ is of absolutely continuous norm. 0 

It is not difficult to show that the Banach space of histories introduced in [3] and 

restricted by the first three postulates liste~ in [3] is a particular case of a history space. 

In that case the third separability postulate is equivalent to condition e). ·It should be 

stressed that those three postulates do not contain RP. We recall from definition (cf. 

ZAANEN [6, p. 476]) that if tP E ~ is ·a function of an absolutely continuous norm, then 

for any e > 0 there exists t5 > 0 such that for any measurable set A c: R + the condition 

(1) p(A) < ~ implies · lltPX..t II < e. 

In what follows we deal with the history .space {~,II· II}. 

LEMMA 1. The family {Ea : G E R + } forms a semi-group of linear . bounded operators 

on~ continuous in the strong operator topology. 

P r o o f. It is obvious that the family {Ea : G E R + } forms a semi-group of linear 

operators. To prove their boundedness let. us notice that the condition b) implies that 

there exist .two positiv~ constants c1 and c2 such that, for any f/> E ~ and G ~ 0, 

IIEaf/>11 ~ c1 {I(Eaf/>)(0)1,.+ II,(Eaf/>)11,} = c1 {lf/>(0)1,.+ IIT:fl>+f/>(O)X<o,a1ll} 

~ c1 {lf/>(0)1,. + IITallll,fl> II,+ llfi>(O) X<0.a1 II} 

~ Ct {(1 + lllX<o,a]ll}lf/>(0)/,.+ IITallllrtPII,} 

~ C1C2 {1 + IIIX<o,aJII+ IITall}llf/>11. 

Since {'J'11: G E R +} forms a semi-group of class ~ 0 (cf. condition d)) the norm !!Tall 
is finite for any G and by condition c) for any G the operator Ea is bounded. To prove the 

strong continuity of {£17} let us take two arbitrary non-negative numbers Go and G1 to get 

the estimation 

IIEa1tP-:- Eaof/> II ~ !ITa! rtP- ra0.r f/> llr + lll/>(0) Xca~.aD II' 

where a~:=min{a0 ,a1 }, G~ :=max{G0 ,at}. From condition e) and (1) as well as 

from the absolute continuity of p, with respect to ). it follows that given a0 ~ 0 for any 

e > 0 there exists t5 > 0 such that 11(])(0) X<a&•a; 1 II < e/2 if a 1 is such that a~_.:. G~ < t5. 

The strong continuity of {Ta : 0' E R + } implies that II ra r f/>- yao, (/)II < e /2 whenever 

G ~ 0 and Ia- a0 1 < t5 1 with some positive t5 1 • Applying these to the above estimation 

we can see that 

IIEal(]}-Eao(/)11 < e, 

whenever 0'1 ~ 0 and la1 -G0 1 < min{t5, t5t}. This ends the proof. 0 
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Infinitesimal generator 

To find the form of the infinitesimal generator A 'Of {Ea; a E R +} and its domain 
D(A), i.e. the set of those P E ~ for which the limit 

(2) lim ct- 1 {Eap- P} ~ :A lJ' 
a-+0+ 

exists, it should be pointed out first, that any P'1 given by 

(3) 

with some (/) E ~ and 'YJ > 0 belongs to D(A) ( cf. HILLE and PHILIPS [7]). Furthermore, 

in view of lim Ea (/) = (/) the relation lim_!_ PfJ = (/) holds. Integrating Eq. (3) gives 
a-+0+ f'/-+0 'YJ 

8 

([J(O) (rJ-s)+ J .([J(s-ct)da if 0 ~ s ~ 'YJ, 
0 

'7 
J ([J(s- ct)da if s > 'YJ· -
0 

We can see that 'P'7 is absolutely continuous and hence possesses, p,- a.e., the derivative 

.P., defined pointwise by tJiJ.i)"f:, ! 'Pq(s). This derivativ~ satisfies the equation . 

(4) P. - (/)- £'1(/J '7- ' 

and at s = 0 vanishes. To check the properties of elements of D(A) let us take 'P E D(A), 

then the pointwise calculation gives ' 

( . .. ) I lim _!_{'P(s-<t)-P(s)} = -P(s) if s > 0, 
Ea'P- 'P a-+0+ C1 

lim (s) = 
a-+0+ !-' · C1 1 

- lim-{P{O)-P(O)}=O if s=O. 
a_.O+ (J 

If in Eq. (2) the limit in the norm II · II exists, then p,- almost everywhere we have 

(5) {
P(s) 

- (A'P)(s) = 
0 

if s > 0, 

if s = 0 

in view of condition a) of Definition. 
LEMMA 2. Let A 0 be a linear transformation defined by 

(6) 

for any 'P E D(A 0 ) : = {'P E ~ : P exists, p,- a. e., belongs to ~ and P(O) = 0 }. Then 
the infinitesimal generator A of {Ea; a E R +} is an extension of A 0 to D(A). 

z 

p r 0 0 f. Let us for 'P E D(Ao) and z E R + calculate r: = f Ea Ao Pda. We get, point-
0 

wise, 
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if O~s~z 
l 

= (EzlJI)(s)-lJI(s). 

if s > z 

z 

The means that A0 has the property £ZlJI-lJI = J Ea A0 lf'da for each lJI E D(A 0 ) and 
0 

z E R +. Thus in view of Theorem 10.5.2 in [7] A0 = AID<Ao> which ends the proof. 0 
CoROLLARY. Each lf''l defined by (3) belongs to D(A 0 ). 0 

Constitutive asymptotic stability 

The general Coleman-Mizel theory involves additionally the relaxation property for 
the norm formulated as a postulate. In the present paper we reject this postulate, intro
ducing 

Constitutive asymptotic stability property. For any continuous functional r defined 
9n ~ ~P:d any <!> E ~ 

(CASP) 
a-+oo 

By such a formulation, which exactly follows that of Coleman and Mizel, a property 
to the history space 58 is introduced. In fact the following result holds (for its proof see 
Appendix): 

·LEMMA 3. The constitutive asymptot~c property holds if and only if in the norm of~ 

(ARP) lim Ea<J> exists 
G-+00 

for any<!> E 58. 0 

Note that ARP (the asymptotic rest property) is the mathematical expression of the 
Noll relaxation axiom V of the material element [4] if the state space of the material with 
memory is identified with the history space ~. The relaxation axiom, as well as ARP, 
postulate that if a material element is frozen in a definite configuration, i.e. in Ea<J>, its 
state will approach a relaxed state, i.e. a limit value <J>f: = lim Ea<J>. 

a-+oo 

Now we are ready to formulate the main 
THEOREM 2. If the Banach space 58 has CASP, then the norm II · II has the Coleman-Mizel 

relaxation property, i.e. the only limit of Eacp for a tending to infinity is the constant function 
f/>(O)t(s) = C/J(O), s E R +. ' 

Hence we can obtain the following 
CoROLLARY. If the Banach space 58 'possesses ARP, then the constitutive model repre

sented by a continuous response (unction r defined on ~ has fading memory. 0 
Proof of Theorem 2. Let lJI be an element of~ and take any T > 0. Since {Ea} 

forms a semi-group of class CC 0 , ASP results in 

El"(lim EalJI) ==: lim El"(EalJI) = lim £Hap = lim EalJI = lJII. 
a-+00 a-+00 a-+00 
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This means that 

(7) 

for any lJI1 : = lim EalJI, and -r E R + with arbitrary lJI E ~. Now we notice that lJII 
G-+00 

belongs to D(A). In view of (7) and (3), for any 

'1 

lJI E ~, D(A) 3 _!_ r E-rlJif d-r = P'. 
1]0 

By Corollary to Lemma 2lJI1 belongs to D(A 0 ), too, and satisfies the equation A 0 lJII = O· 

'h d 
Wit A 0 = - ds. 

This means that lJII = const, p,- a.e. and is equal to lJI(O). In fact, since Eq. (2) has 

to hold in the norm II· II, the point b) of Definition implies that 

lim (EalJI) (0) = lJII(O). 
G-+00 

But (EalJI)(O) = lJI(O) for any a ~ 0, hence lJII = lJI(O)t, which ends the proof. 0 

Concluding remarks 

It is not difficult to check that the material with memory represented by r defined 

on the Banach function space~ with ARP for its norm, can be treated as a material element 

in the sense of NoLL [4]. We shall call it a material element with temporal memory. The 

mapping a:~ ~ ~ defined by a (lJI) : = lJII (above) plays the role of the state relaxation 

mapping of Noll's theory; the members of the range of a, i.e. ~rei : = a(~) will be called 

relaxed states. 
According to Noll's classification a semi-elastic material element is defined by the 

condition that the relaxed states be in one-to-one correspondence with the deformations,. 

i.e. elements of Vn. 
Now in view of Theorem 2 and the above remarks we have the following 

THEOREM 3. A material element with temporal memory is semi-elastic. 

Proof. The function ): : = <5 0 o a with <50 (l/>) : = l/>(0) defined by i(P) = <50(a(1JI)) = 

= a(lJI)(O) is the desired correspondence. D , 

A visco-plastic material and plastic one are materials with structure (cf. [5]) and are 

examples of a non-semi elastic material element in the, sense of NoLL _[4], since for them 

to one value of deformation may correspond more than one different relaxed states. Hence 

Theorem 3 implies: 

CoROLLARY. If the history space~ possesses ARP, then the constitutive mo?el repre

sented by any continuous constitutive response function r defined on ~ is improper 

for the description of visco-plastic as well as plastic materials. _ D 
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_Appendix (Proof of Lemma 3) 

It is necessary to demonstrate is the implication "=>". To this end let us assume that 
·there exists an element f/J E ~ such that lim Eaf/J does not exist. Then one of the possibil-

o a->c:o 0 

·ities is that no subsequence of {Eanf/J }0' converges. Take any subsequence {Ea,.f/J }0'. Then 
0 0 

·the set 

B : = { Ea,.(]J : n ~ natural and dn --+ oo} 
- 0 

is closed, since ~"-.B is open in~. Let us define a real-valued function/ on B by the formula, 
Jor any lJf E B, 

{A .I) - f('P) := min{k-natural: Eak(/J = 'P}. 
0 

The sequence {Ea,.(]J }0' contains no convergent subsequence, and hence for each 'P 
0 

the set on the right-hand side of (A.l) has finite number of elements and the function/ 
is well-defined and continuous, as its range is discrete. Now, let us note that ~is a normal 
·topological space and hence any continuous function defined on a closed set has a continu
-ous extension to the whole space ~. The extended function f may be used to construct 
.a continuous response functional r 1 on ~ by the identity 

r, := rof, 

where r0 is a constant non-zero element in the space of responses 9l. It is seen from (A. I) 
that lim r 1(E~f/J) does not exist, for lim f(Ea,.(]J) = oo. This proves that ·the sequence 

o->c:o 0 n-+c:o 0 

{ Ean(]J }6 must contain at least one convergent subsequence. If { Eap(]J }0' is that subseql!ence 
0 0 

.and no other convergent subsequence exists, then the set 

{Ea(]J; (J E R+}""{Eap(]J; p- natural and (JP--+ oo} 
0 0 

-does not contain any convergent subsequence. But in view· of the previous part of the 
proof this is impossible. 

Hence the only possibility is that the sequence {Eat!> }0' contains two subsequences 
0 

-convergent to different limits. If lJf and 'Pare those limits and 'P -::/= '!!then we may define 
0 I 0 1 

by the normality of ~ a continuous real-valued function g on ~ such that 

(A.2) g('P) = 0 and g('P) = 1 . 
0 1 

http://rcin.org.pl



TEMPORAL MEMORY AS A CONSTITUTIVE PRINCIPLE AND ITS LIMITATIONS 547 

Note that in this case we may construct the continuous respose functional r 9 : = r0 g 
such that the limit of the sequence { r(Eaf/>) }g' does not exist, because its two subsequen-

g 0 

ces, by (A.2), converge to two different limits 0 and r0 , respectively. This ends the whole 
proof, the idea of which comes from K. FRISCHMUTH and S. SPAHN. 
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