593.

A SHEEPSHANKS' PROBLEM (1866).

[From the Messenger of Mathematics, vol. iv. (1875), pp. 34-36.]
Apply the formulce of elliptic motion to determine the motion of a body let fall from the top of a tower at the equator.

The earth is regarded as rotating with the angular velocity ω round a fixed axis, so that the body is in fact projected from the apocentre with an angular velocity $=\omega$; and we write α for the equatorial radius, β for the height of the tower; then g denoting the force of gravity, and μ, h, n, a, e, θ, as in the theory of elliptic motion, we have
whence

$$
\begin{aligned}
\mu=\quad n^{2} a^{3} & =g \alpha^{2}, \\
h=(\alpha+\beta)^{2} \omega & =n a^{2} \sqrt{ }\left(1-e^{2}\right), \\
\alpha+\beta & =a(1+e) ;
\end{aligned}
$$

$$
\begin{aligned}
& (\alpha+\beta)^{4} \omega^{2}=g \alpha^{2} \alpha\left(1-e^{2}\right), \\
& (\alpha+\beta)=a(1+e), \\
& \frac{(\alpha+\beta)^{3} \omega^{2}}{g \alpha^{2}}=\frac{\alpha \omega^{2}}{g}\left(1+\frac{\beta}{\alpha}\right)^{3}=1-e,
\end{aligned}
$$

where $\frac{\alpha \omega^{2}}{g}=$ ratio of centrifugal force to gravity,

$$
=\frac{1}{289},
$$

so that $1-e$ is small;

$$
r=\frac{a\left(1-e^{2}\right)}{1-e \cos \theta}, \quad=\frac{(\alpha+\beta)(1-e)}{1-e \cos \theta},
$$

whence

$$
1-e \cos \theta=\frac{(\alpha+\beta)(1-e)}{r} .
$$

c. IX.

Suppose

$$
\begin{gathered}
r=\alpha \\
1-e \cos \theta=(1-e)\left(1+\frac{\beta}{\alpha}\right)=1-e+\frac{\beta}{\alpha}(1-e)
\end{gathered}
$$

which is nearly

$$
=1-e \text {, }
$$

that is, θ is small, and therefore approximately

$$
1-e+\frac{1}{2} e \theta^{2}=1-e+\frac{\beta}{\alpha}(1-e)
$$

or

$$
\theta^{2}=\frac{2 \beta}{\alpha} \frac{1-e}{e} ;
$$

we then have

$$
\begin{aligned}
r^{2} d \theta=h d t, \text { or } d t=\frac{r^{2} d \theta}{h} & =\frac{(\alpha+\beta)^{2}(1-e)^{2}}{(\alpha+\beta)^{2} \omega(1-e \cos \theta)^{2}} d \theta \\
& =\frac{(1-e)^{2}}{\omega^{2}(1-e \cos \theta)^{2}} d \theta \\
& =\frac{(1-e)^{2}}{\omega\left(1-e+\frac{1}{2} e \theta^{2}\right)^{2}} d \theta \\
& =\frac{1}{\omega\left(1+\frac{\frac{1}{2} e}{1-e} \theta^{2}\right)^{2}} d \theta \\
& =\frac{1}{\omega}\left(1-\frac{e}{1-e} \theta^{2}\right) d \theta
\end{aligned}
$$

that is,

$$
\omega d t=\left(1-\frac{e}{1-e} \theta^{2}\right) d \theta
$$

Integrating, we have

$$
\theta\left(1-\frac{\frac{1}{3} e \theta^{2}}{1-e}\right)=\omega t,
$$

where $\omega t=$ earth's rotation in time $t,=\phi$ suppose ; therefore

$$
\theta\left(1-\frac{\frac{1}{3} e \theta^{2}}{1-e}\right)=\phi
$$

hence, if θ be as above, the angle described in falling to the surface,

$$
\begin{gathered}
e \theta^{2} \\
1-e \\
\theta\left(1-\frac{2 \beta}{\alpha} \frac{\beta}{\alpha}\right)=\phi, \\
\theta-\phi=\frac{2}{3} \frac{\beta}{a} \theta=\frac{2}{3} \frac{\beta}{\alpha} \sqrt{ }\left(\frac{2 \beta}{\alpha} \frac{1-e}{e}\right) .
\end{gathered}
$$

Writing herein

$$
\frac{1-e}{e},=1-e,=\frac{\alpha \omega^{2}}{g}
$$

this is

$$
=\frac{2}{3} \frac{\beta}{\alpha} \sqrt{ }\left(\frac{2 \beta}{\alpha} \frac{\alpha \omega^{2}}{g}\right)=\frac{(2 \beta)^{\frac{3}{2}}}{3 \alpha^{\frac{3}{2}}} \sqrt{ }\left(\frac{\alpha \omega^{2}}{g}\right),
$$

viz.

$$
\theta-\phi=\frac{2^{\frac{3}{2}} \cdot \beta^{\frac{2}{2}}}{3 \alpha^{\frac{3}{2}}} \sqrt{ } /\left(\frac{\alpha \omega^{2}}{g}\right)
$$

whence

$$
\alpha(\theta-\phi)=\frac{2 \sqrt{ }(2)}{3} \sqrt{ }\left(\frac{\beta}{\alpha}\right) \sqrt{ }\left(\frac{\alpha \omega^{2}}{g}\right) \beta
$$

or say

$$
\frac{\alpha(\theta-\phi)}{\beta}=\frac{2 \sqrt{ }(2)}{3} \sqrt{ }\left(\frac{\beta}{\alpha}\right) \sqrt{ }\left(\frac{\alpha \omega^{2}}{g}\right)
$$

where $\alpha(\theta-\phi)$ is the distance at which the body falls from the foot of the tower. Substituting for $\sqrt{ }\left(\frac{\alpha \omega^{2}}{g}\right)$ its value, $=\frac{1}{17}$, we have

$$
\frac{\alpha(\theta-\phi)}{\beta}=\frac{2 \sqrt{ }(2)}{51} \sqrt{ }\left(\frac{\beta}{\alpha}\right),=056 \sqrt{ }\left(\frac{\beta}{\alpha}\right)
$$

