595.

ON A SENATE-HOUSE PROBLEM.

[From the Messenger of Mathematics, vol. Iv. (1875), pp. 75-78.]
The following was given [5 Jan., 1874,] as a problem of elementary algebra:
"Solve the equations

$$
u(2 a-x)=x(2 a-y)=y(2 a-z)=z(2 a-u)=b^{2}
$$

and prove that unless $b^{2}=2 a^{2}, x=y=z=u$, but that if $b^{2}=2 a^{2}$, the equations are not independent."

This is really a very remarkable theorem in regard to the intersections of a certain set of four quadric surfaces in four-dimensional space; viz. slightly altering the notation, we may write the equations in the form

$$
\begin{aligned}
& x(2 \theta-y)=m \theta^{2} \ldots(12), \\
& y(2 \theta-z)=m \theta^{2} \ldots(23), \\
& z(2 \theta-w)=m \theta^{2} \ldots(34), \\
& w(2 \theta-x)=m \theta^{2} \ldots(41),
\end{aligned}
$$

where, regarding (x, y, z, w, θ) as coordinates in four-dimensional space, each equation represents a quadric surface. I remark that in such a space we have the notions, pointsystem, curve, subsurface, surface, according as the number of equations is $4,3,2$, or 1 .

Four quadric surfaces intersect in general in 16 points. But for the system in question (m being arbitrary), the common intersection consists of two lines and the two points

$$
x=y=z=w=\theta\{1 \pm \sqrt{ }(1-m)\} ;
$$

and in the case where $m=2$, then the intersection consists of two lines and a certain unicursal quartic curve.

To obtain these results, I consider the four points

$$
\begin{array}{llll}
\theta=0, & x=0, & y=0, & z=0, \ldots 123, \\
\theta=0, & y=0, & z=0, & w=0, \ldots 234, \\
\theta=0, & z=0, & w=0, & x=0, \ldots 341, \\
\theta=0, & w=0, & x=0, & y=0, \ldots 412:
\end{array}
$$

the two points

$$
x=y=z=w=\theta\{1 \pm \sqrt{ }(1-m)\}, \ldots P Q:
$$

and the six lines

$$
\begin{array}{ll}
\theta=0, & x=0, \\
\theta=0, \ldots 12, \\
\theta=0, & y=0, \\
\theta=0, \ldots 23, \\
\theta=0, & z=0, \\
\theta=0, \ldots 34, \\
\theta=0, & x=0, \\
\theta=0, \ldots 413, \\
\theta=0, & y=0, \\
w=0, \ldots 24,
\end{array}
$$

being the edges of a tetrahedron, the vertices of which are the four points, viz. the point 123 is the intersection of the lines $12,13,23$, and so for the other points.

The surfaces contain the several lines, viz.
the surface 12 contains $(12)^{2}, 13,14,23,24$,

$"$	23	$"$	$(23)^{2}, 12,24,13,34$,
$"$	34	$"$	$(34)^{2}, 13,23,14,24$,
$"$	41	$"$	$(41)^{2}, 24,34,12,13$,

where (12) $)^{2}$ denotes that 12 is a double line on the surface, and so in other cases. And it thus appears that the surfaces pass all four of them through the lines 13,24 , so that these lines are a part of the common intersection. To obtain the residual intersection, observe that the equations give

$$
\begin{aligned}
& x=2 \theta-m \frac{\theta^{2}}{w}=\frac{m \theta^{2}}{2 \theta-y}, \\
& z=2 \theta-m \frac{\theta^{2}}{y}=\frac{m \theta^{2}}{2 \theta-w,}
\end{aligned}
$$

whence

$$
\begin{aligned}
& (2 \theta-y)\left(2 \theta-\frac{m \theta^{2}}{w}\right)=m \theta^{2}, \\
& (2 \theta-w)\left(2 \theta-\frac{m \theta^{2}}{y}\right)=m \theta^{2},
\end{aligned}
$$

or omitting from each equation the factor θ, the equations become

$$
\begin{aligned}
& (2 \theta-y)(2 w-m \theta)=m \theta w, \\
& (2 \theta-w)(2 y-m \theta)=m \theta y,
\end{aligned}
$$

that is,

$$
\begin{aligned}
& (4-2 m) \theta w-2 m \theta^{2}-2 y w+m \theta(y+w)=0, \\
& (4-2 m) \theta y-2 m \theta^{2}-2 y w+m \theta(y+w)=0 .
\end{aligned}
$$

Whence, m not being $=2$, we have $y=w$, and then

$$
w^{2}-2 \theta w+m \theta^{2}=0,
$$

or, what is the same thing,

$$
2 \theta-w=\frac{m \theta^{2}}{w}
$$

giving $x=y=z=w=\theta\{1 \pm \sqrt{ }(1-m)\}$, viz. the surfaces each pass through the points P, Q. As regards the omitted factor θ, it is to be observed that, writing in the equations of the four surfaces $\theta=0$, the equations become $x y=0, y z=0, z w=0, w x=0$, satisfied by $x=0, z=0$, or by $y=0, w=0$, we have thus ($\theta=0, x=0, z=0$) and $(\theta=0, y=0, w=0)$, viz. the before-mentioned lines 13 and 24 .

In the case $m=2$, we have between y, w the single equation

$$
y w-\theta(y+w)+2 \theta^{2}=0,
$$

giving

$$
y=\frac{\theta(w-2 \theta)}{w-\theta}
$$

and thence

$$
\begin{aligned}
& x=\frac{2 \theta(w-\theta)}{w} \\
& z=\frac{-2 \theta^{2}}{w-\theta}
\end{aligned}
$$

or, writing for convenience $\alpha=\frac{w}{\theta}$, then the equations are

$$
\begin{aligned}
& \frac{w}{\theta}=\alpha, \\
& \frac{y}{\theta}=\frac{\alpha-2}{\alpha-1}, \\
& \frac{z}{\theta}=\frac{-2}{\alpha-2}, \\
& \bar{x}=\frac{2(\alpha-1)}{\alpha} ;
\end{aligned}
$$

or, what is the same thing,

$$
\begin{aligned}
& x=\quad 2(\alpha-1)^{2}(\alpha-2)\left(1-\frac{\alpha}{\infty}\right) \\
& : y \quad: \quad \alpha \quad \ldots \quad(\alpha-2)^{2}\left(1-\frac{\alpha}{\infty}\right) \\
& : z \quad:-2 \alpha(\alpha-1) \quad \ldots \quad\left(1-\frac{\alpha}{\infty}\right)^{2} \\
& : w \quad: \quad \alpha^{2}(\alpha-1)(\alpha-2) \quad \ldots \\
& : \theta \quad: \quad \alpha(\alpha-1)(\alpha-2)\left(1-\frac{\alpha}{\infty}\right),
\end{aligned}
$$

where, for the sake of homogeneity, I have introduced the factors $\left(1-\frac{\alpha}{\infty}\right)$ and $\left(1-\frac{\alpha}{\infty}\right)^{2}$; viz. we have x, y, z, w, θ proportional to quartic functions of the arbitrary parameter α, or the curve is a unicursal quartic. Writing in the equations $\alpha=0,1,2, \infty$ successively, we see that this quartic curve passes through the four points 123, 234, 341, 412 (intersecting at these points the lines 13 and 24 respectively); and writing also $\alpha=1 \pm i$ we see that the curve passes through the points P, Q, the coordinates of which now are

$$
x=y=z=w=(1 \pm i) \theta .
$$

It should admit of being proved by general considerations that, in 4 -dimensional geometry when 4 quadric surfaces partially intersect in two lines, the residual intersection consists of 2 points; and that, when they intersect in the two lines and in a unicursal quartic met twice by each of the lines, there is no residual intersection-but this theory has not yet been developed.

