596.

NOTE ON A THEOREM OF JACOBI'S FOR THE TRANSFORMATION OF A DOUBLE INTEGRAL.

[From the Messenger of Mathematics, vol. Iv. (1875), pp. 92-94.]
Jacobi, in the Memoir " De Transformatione Integralis Duplicis..." \&c., Crelle, t. viII. (1832) pp. 253-279 and 321-357, [Ges. Werke, t. III., pp. 91-158], after establishing a theorem which includes the addition-theorem of elliptic functions, viz. this last is "the differential equation

$$
\frac{d \eta}{\left.\sqrt{\left(G^{\prime 2} \cos ^{2} \eta+G^{\prime \prime 2}\right.} \sin ^{2} \eta-G^{2}\right)}+\frac{d \theta}{\left.\sqrt{\left(G^{\prime 2} \cos ^{2} \theta+G^{\prime \prime 2} \sin ^{2} \theta-G^{2}\right.}\right)},
$$

has for its complete integral

$$
G+G^{\prime} \cos \eta \cos \theta+G^{\prime \prime} \sin \eta \sin \theta=0, \prime
$$

\{observe, as to the integral being complete, that the differential equation contains only the constant $G^{2}-G^{\prime 2} \div\left(G^{2}-G^{\prime \prime 2}\right)$, whereas the integral equation contains the two constants $G^{\prime} \div G$ and $\left.G^{\prime \prime} \div G\right\}$, obtains a corresponding theorem for double integrals; viz. this, in the corresponding special case, is as follows: If the variables (ϕ, ψ) and (η, θ) are connected by the two equations

$$
\begin{array}{c|ll}
\alpha & =0, & \beta \\
+\alpha^{\prime} \cos \phi & \cdot \cos \eta & +\beta^{\prime} \cos \phi \\
+\alpha^{\prime \prime} \sin \phi \cos \psi \cdot \sin \eta \cos \theta & +\beta^{\prime \prime} \sin \phi \cos \eta \\
+\alpha^{\prime \prime} \sin \phi \sin \psi \cdot \sin \eta \cos \eta \sin \theta & +\beta^{\prime \prime \prime} \sin \phi \sin \psi \cdot \sin \eta \sin \theta
\end{array}
$$

and if putting for shortness

$$
\begin{gathered}
\alpha^{\prime \prime} \beta^{\prime \prime \prime}-\alpha^{\prime \prime \prime} \beta^{\prime \prime}=f, \quad \alpha \beta^{\prime}-\alpha^{\prime} \beta=a, \\
\alpha^{\prime \prime \prime} \beta^{\prime}-\alpha^{\prime} \beta^{\prime \prime \prime}=g, \quad \alpha \beta^{\prime \prime}-\alpha^{\prime \prime} \beta=b, \\
\alpha^{\prime} \beta^{\prime \prime}-\alpha^{\prime \prime} \beta^{\prime}=h, \quad \alpha \beta^{\prime \prime \prime}-\alpha^{\prime \prime \prime} \beta=c, \\
(\text { whence } a f+b g+c h=0)
\end{gathered}
$$

$$
\begin{aligned}
R^{2}= & f^{2}(\sin \phi \cos \psi)^{2}(\sin \phi \sin \psi)^{2} \\
& +g^{2}(\sin \phi \cos \psi)^{2}(\cos \phi)^{2} \\
& +h^{2}(\cos \phi)^{2}(\sin \phi \cos \psi)^{2} \\
& -a^{2}(\cos \phi)^{2} \\
& -b^{2}(\sin \phi \cos \psi)^{2} \\
& -c^{2}(\sin \phi \sin \psi)^{2}, \\
S^{2}= & f^{2}(\sin \eta \cos \theta)^{2}(\sin \eta \sin \theta)^{2} \\
& +g^{2}(\sin \eta \sin \theta)^{2}(\cos \eta)^{2} \\
& +h^{2}(\cos \eta)^{2}(\sin \eta \cos \theta)^{2} \\
& -a^{2}(\cos \eta)^{2} \\
& -b^{2}(\sin \eta \cos \theta)^{2} \\
& -c^{2}(\sin \eta \sin \theta)^{2},
\end{aligned}
$$

then we have

$$
\frac{\sin \phi d \phi d \psi}{R}=\frac{\sin \eta d \eta d \theta}{S} .
$$

And it may be added that the integral equations are, so to speak, a complete integral of the differential relation; viz. in virtue of the identity $a f+b g+c h=0$, the differential relation contains really only four constants; the integral relations contain the six constants $\alpha: \alpha^{\prime}: \alpha^{\prime \prime}: \alpha^{\prime \prime \prime}$ and $\beta: \beta^{\prime}: \beta^{\prime \prime}: \beta^{\prime \prime \prime}$, or we have two constants introduced by the integration.

The best form of statement is, in the first theorem, to write x, y for $\cos \eta, \sin \eta,\left(x^{2}+y^{2}=1\right)$, ξ, η for $\cos \theta, \sin \theta,\left(\xi^{2}+\eta^{2}=1\right)$, and similarly in the second theorem to introduce the variables x, y, z connected by $x^{2}+y^{2}+z^{2}=1$, and ξ, η, ζ connected by $\xi^{2}+\eta^{2}+\zeta^{2}=1$; then in the first theorem $d \eta, d \theta$ represent elements of circular arc, and in the second theorem $\sin \phi d \phi d \psi$ and $\sin \eta d \eta d \theta$ represent elements of spherical surface, and the theorems are:
I. If (x, y) are coordinates of a point on the circle $x^{2}+y^{2}=1$, and (ξ, η) coordinates of a point on the circle $\xi^{2}+\eta^{2}=1$, and if $d s, d \sigma$ are the corresponding circular elements, then

$$
\frac{d s}{\sqrt{\left(a x^{2}+b y^{2}-c\right)}}=\frac{d \sigma}{\sqrt{\left(a \xi^{2}+b \eta^{2}-c\right)}},
$$

has for its complete integral

$$
a x \xi+b y \eta-c=0 .
$$

II. If (x, y, z) are coordinates of a point on the sphere $x^{2}+y^{2}+z^{2}=1$, and (ξ, η, ζ) coordinates of a point on the sphere $\xi^{2}+\eta^{2}+\zeta^{2}=1$; and if $d s, d \sigma$ are the corresponding spherical elements, and

$$
\begin{gathered}
\beta \gamma^{\prime}-\beta^{\prime} \gamma=f, \quad \alpha \delta^{\prime}-\alpha^{\prime} \delta=a, \\
\gamma \alpha^{\prime}-\gamma^{\prime} \alpha=g, \quad \beta \delta^{\prime}-\beta^{\prime} \delta=b, \\
\alpha \beta^{\prime}-\alpha^{\prime} \beta=h, \quad \gamma \delta^{\prime}-\gamma^{\prime} \delta=c, \\
(\text { whence } a f+b g+c h=0),
\end{gathered}
$$

and for shortness

$$
\begin{aligned}
& S^{2}=f^{2} y^{2} z^{2}+g^{2} z^{2} x^{2}+h^{2} x^{2} y^{2}-a^{2} x^{2}-b^{2} y^{2}-c^{2} z^{2}, \\
& \Sigma^{2}=f^{2} \eta^{2} \zeta^{2}+g^{2} \zeta^{2} \xi^{2}+h^{2} \xi^{2} \eta^{2}-a^{2} \xi^{2}-b^{2} \eta^{2}-c^{2} \zeta^{2},
\end{aligned}
$$

then the differential relation

$$
\frac{d s}{\sqrt{ }(S)}=\frac{d \sigma}{\sqrt{ }(\Sigma)},
$$

has for its complete integral the system

$$
\begin{aligned}
& \alpha x \xi+\beta y \eta+\gamma z \zeta+\delta=0 \\
& \alpha^{\prime} x \xi+\beta^{\prime} y \eta+\gamma^{\prime} z \zeta+\delta^{\prime}=0
\end{aligned}
$$

where by complete integral is meant a system of two equations containing two arbitrary constants.

