## 597.

## ON A DIFFERENTIAL EQUATION IN THE THEORY OF ELLIPTIC FUNCTIONS.

[From the Messenger of Mathematics, vol. iv. (1875), pp. 110-113.]
The differential equation

$$
Q^{2}-Q\left(k+\frac{1}{k}\right)-3=3\left(1-k^{2}\right) \frac{d Q}{d k},
$$

considered ante, p. 69, [594, this volume, p. 244], belongs to a class of equations transformable into linear equations of the second order, and consequently is such that, knowing a particular solution, we can obtain the general solution.

In fact, assuming

$$
Q=-3\left(1-k^{2}\right) \frac{1}{z} \frac{d z}{d k},
$$

the equation becomes

$$
\begin{aligned}
& 9\left(1-k^{2}\right)^{2} \frac{1}{z^{2}}\left(\frac{d z}{d k}\right)^{2}+3\left(1-k^{2}\right)\left(k+\frac{1}{k}\right) \frac{1}{z} \frac{d z}{d k}-3 \\
&=3\left(1-k^{2}\right)\left\{3\left(1-k^{2}\right) \frac{1}{z^{2}} \frac{d z}{d k^{2}}+6 k \frac{1}{z} \frac{d z}{d k}-3\left(1-k^{2}\right) \frac{1}{z} \frac{d^{2} z}{d k^{2}}\right\},
\end{aligned}
$$

viz. omitting the terms in $\frac{1}{z^{2}}\left(\frac{d z}{d k}\right)^{2}$ which destroy each other, and dividing by $3\left(1-k^{2}\right)$, this is

$$
\left(k+\frac{1}{k}\right) \frac{1}{z} \frac{d z}{d k}-\frac{1}{1-k^{2}}=6 k \frac{1}{z} \frac{d z}{d k}-3\left(1-k^{2}\right) \frac{1}{z} \frac{d^{2} z}{d k^{2}}
$$

or finally

$$
3\left(1-k^{2}\right) \frac{d^{2} z}{d k^{2}}+\frac{1-5 k^{2}}{k} \frac{d z}{d k}-\frac{1}{1-k^{2}} z=0 .
$$

But knowing a particular value of $Q$ we have

$$
z=\exp .\left\{-\frac{1}{3} \int \frac{Q d z}{1-k^{2}}\right\},
$$

a particular value of $z$, and thence in the ordinary manner the general value of $z$, giving the general value of $Q$.

The solution given in my former paper may be exhibited in a more simple form by introducing, instead of $k$, the variable $\alpha$ connected with it by the equation $k^{2}=\frac{\alpha^{3}(2+\alpha)}{1+2 \alpha}$. We have in fact, Fundamenta Nova, p. 25, [Jacobi's Ges. Werke, t. I., p. 76],

$$
\begin{aligned}
& u^{8}=\alpha^{3} \frac{2+\alpha}{1+2 \alpha}, \quad=k^{2}, \\
& v^{8}=\alpha\left(\frac{2+\alpha}{1+2 \alpha}\right)^{3}, \quad=\lambda^{2},
\end{aligned}
$$

viz. these expressions of $u, v$ in terms of the parameter $\alpha$, are equivalent to, and replace, the modular equation $u^{4}-v^{4}+2 u v\left(1-u^{2} v^{2}\right)=0$. We thence obtain

$$
u^{8} v^{8}=\frac{\alpha^{4}(2+\alpha)^{4}}{(1+2 \alpha)^{4}}, \quad \frac{v^{8}}{u^{8}}=\frac{(2+\alpha)^{2}}{\alpha^{2}(1+2 \alpha)^{2}},
$$

that is,

$$
u v=\sqrt{ }(\alpha) \sqrt{ }\left(\frac{2+\alpha}{1+2 \alpha}\right), \quad \frac{v^{2}}{u^{2}}=\frac{1}{\sqrt{ }(\alpha)} \sqrt{ }\left(\frac{2+\alpha}{1+2 \alpha}\right)
$$

and the particular solution, $Q=\frac{v^{2}}{u^{2}}+2 u v$, becomes

$$
Q=\frac{1}{\sqrt{ }(\alpha)} \sqrt{ }(1+2 \alpha \cdot 2+\alpha),=\sqrt{ }\left\{5+2\left(\alpha+\frac{1}{\alpha}\right)\right\} .
$$

Introducing into the differential equation $\alpha$ in place of $k$, this is found to be

$$
Q^{2}-Q \frac{\frac{1}{\alpha^{2}}+\alpha^{2}+2\left(\frac{1}{\alpha}+\alpha\right)}{\sqrt{ }\left\{5+2\left(\alpha+\frac{1}{\alpha}\right)\right\}}-3=\left(1-\alpha^{2}\right) \sqrt{ }\left\{5+2\left(\alpha+\frac{1}{\alpha}\right)\right\} \frac{d Q}{d \alpha}
$$

But from this form it at once appears that it is convenient in place of $\alpha$ to introduce the new variable $\beta,=\alpha+\frac{1}{\alpha}$; the equation thus becomes

$$
Q^{2}+Q \frac{2-2 \beta-\beta^{2}}{\sqrt{ }(5+2 \beta)}-3=\left(4-\beta^{2}\right) \sqrt{ }(5+2 \beta) \frac{d Q}{d \beta},
$$

satisfied by $Q=\sqrt{ }(5+2 \beta)$; or, what is the same thing, writing $5+2 \beta=\gamma^{2}$, that is, $\beta=-\frac{5}{2}+\gamma^{2}$, the equation becomes
satisfied by $Q=\gamma$.

$$
4 Q^{2}+\frac{Q}{\gamma}\left(3+6 \gamma^{2}-\gamma^{4}\right)-12=-\left(\gamma^{2}-1\right)\left(\gamma^{2}-9\right) \frac{d Q}{d \gamma}
$$

Writing here

$$
Q=\frac{1}{4}\left(\gamma^{2}-1\right)\left(\gamma^{2}-9\right) \frac{1}{z} \frac{d z}{d \gamma},
$$

we have for $z$ the equation

$$
\left(\gamma^{2}-1\right)\left(\gamma^{2}-9\right) \frac{d^{2} z}{d \gamma^{2}}+\left(3 \gamma^{4}-14 \gamma^{2}+3\right) \frac{d z}{d \gamma}-\frac{48}{\left(\gamma^{2}-1\right)\left(\gamma^{2}-9\right)} z=0,
$$

satisfied by

$$
z=\left(\frac{\gamma^{2}-9}{\gamma^{2}-1}\right)^{\frac{1}{2}} .
$$

[In fact, this value gives

$$
\begin{aligned}
z & =\left(\gamma^{2}-9\right)^{\frac{1}{4}}\left(\gamma^{2}-1\right)^{-\frac{1}{4}}, \\
\frac{d z}{d \gamma} & =4 \gamma\left(\gamma^{2}-9\right)^{-\frac{3}{4}}\left(\gamma^{2}-1\right)^{-\frac{5}{2}}, \\
\frac{d^{2} z}{d \gamma^{2}} & =\left(-12 \gamma^{4}+57 \gamma^{2}+36\right)\left(\gamma^{2}-9\right)^{-\frac{7}{4}}\left(\gamma^{2}-1\right)^{-\frac{9}{4}},
\end{aligned}
$$

which verify the equation as they should do.]
Representing for a moment the differential equation by $A \frac{d^{2} z}{d \gamma^{2}}+B \frac{d z}{d \gamma}+C z=0$, and putting $z_{1}=\left(\frac{\gamma^{2}-9}{\gamma^{2}-1}\right)^{\frac{1}{2}}$, then assuming $z=z_{1} \int y d \gamma$, we find

$$
A\left(z_{1} \frac{d y}{d \gamma}+2 y \frac{d z_{1}}{d \gamma}\right)+B y z_{1}=0
$$

that is,

$$
\frac{1}{y} \frac{d y}{d \gamma}+\frac{2}{z_{1}} \frac{d z_{1}}{d \gamma}+\frac{B}{A}=0,
$$

viz.

$$
\frac{1}{y} \frac{d y}{d \gamma}+\frac{2}{z_{1}} \frac{d z_{1}}{d \gamma}+\frac{3 \gamma^{4}-14 \gamma^{2}+3}{\left(\gamma^{2}-1\right)\left(\gamma^{2}-9\right)}=0
$$

or

$$
\frac{1}{y} \frac{d y}{d \gamma}+\frac{2}{z_{1}} \frac{d z_{1}}{d \gamma}+3+\frac{1}{\gamma^{2}-1}+\frac{15}{\gamma^{2}-9}=0
$$

whence, integrating

$$
\log y z_{1}^{2}+3 \gamma-\frac{1}{2} \log \frac{\gamma+1}{\gamma-1}-\frac{5}{2} \log \frac{\gamma+3}{\gamma-3}=0
$$

that is,

$$
\begin{aligned}
y & =e^{-3 \gamma} \frac{1}{z_{1}^{2}}\left(\frac{\gamma+1}{\gamma-1}\right)^{\frac{1}{2}}\left(\frac{\gamma+3}{\gamma-3}\right)^{\frac{5}{2}} \\
& =e^{-3 \gamma}\left(\frac{\gamma-1 \cdot \gamma+1}{\gamma-3 \cdot \gamma+3}\right)^{\frac{1}{2}}\left(\frac{\gamma+1}{\gamma-1}\right)^{\frac{1}{2}}\left(\frac{\gamma+3}{\gamma-3}\right)^{\frac{5}{2}} \\
& =\frac{(\gamma+1)(\gamma+3)^{2}}{(\gamma-3)^{3}} e^{-3 \gamma} .
\end{aligned}
$$

Hence, the general value of $z$ is

$$
z=K\left(\frac{\gamma^{2}-9}{\gamma^{2}-1}\right)^{\frac{1}{2}} \int_{\gamma_{0}} \frac{(\gamma+1)(\gamma+3)^{2}}{(\gamma-3)^{3}} e^{-3 \gamma} d \gamma,
$$

the constants of integration being $K$ and $\gamma_{0}$, or, what is the same thing,

$$
z=\left(\frac{\gamma^{2}-9}{\gamma^{2}-1}\right)^{\frac{1}{2}}\left\{C+D \int_{\infty} \frac{(\gamma+1)(\gamma+3)^{2}}{(\gamma-3)^{3}} e^{-3 \gamma} d \gamma\right\},
$$

the corresponding value of $Q$ being

$$
Q=\frac{1}{4}\left(\gamma^{2}-1\right)\left(\gamma^{2}-9\right) \frac{1}{z} \frac{d z}{d \gamma},
$$

which contains the single arbitrary constant $\frac{D}{C}$; when this vanishes, we have the foregoing particular solution $Q=\gamma$.

I recall that the expression of $\gamma$ is

$$
\gamma=\sqrt{ }(5+2 \beta),=\sqrt{ }\left\{5+2\left(\alpha+\frac{1}{\alpha}\right)\right\},=\frac{1}{\sqrt{ }(\alpha)} \sqrt{ }\{(2+\alpha)(1+2 \alpha)\}
$$

where $\alpha$ is connected with $k$ by the relation

$$
k^{2}=\frac{\alpha^{3}(2+\alpha)}{1+2 \alpha} .
$$

