598.

NOTE ON A PROCESS OF INTEGRATION.

[From the Messenger of Mathematics, vol. iv. (1875), pp. 149, 150.]
I HAD occasion to consider the integral

$$
\int_{0}^{R} \frac{r^{s-1} d r}{\left\{r^{2}+e^{2}\right\}^{\frac{1}{s}+q}}
$$

where e is small in regard to R and q is negative. The integral is finite when $e=0$, and it might be imagined that it could be expanded in positive powers of e; and, assuming it to be thus expansible, that the process would simply be to expand under the integral sign in ascending powers of e, and integrate each term separately, so that the series would be in integer powers of e^{2}.

Take two particular cases. First, let
the integral is

$$
s=2, \quad q=-\frac{3}{2}
$$

$$
\begin{aligned}
\int_{0}^{R} r \sqrt{ }\left(r^{2}+e^{2}\right) d r & =\int_{0}^{R} d r\left(r^{2}+\frac{1}{2} e^{2} r^{0}-\frac{1}{8} e^{4} r^{-2}+\ldots\right) \\
& =\frac{1}{3} R^{3}+\frac{1}{2} e^{2} R+\infty e^{4}+\ldots,
\end{aligned}
$$

viz. the integral is not thus obtainable: the series is right as far as it goes, but the true expansion contains a term in e^{3}; and the failure of the series to give the true expansion is indicated by the appearance of infinite coefficients. In fact, the indefinite integral is $\frac{1}{3}\left(r^{2}+e^{2}\right)^{\frac{3}{2}}$; taking this between the limits, it is

$$
\frac{1}{3}\left(R^{2}+e^{2}\right)^{\frac{3}{2}}-\frac{1}{3} e^{3}, \quad=\frac{1}{3} R^{3}+\frac{1}{2} e^{2} R+\ldots-\frac{1}{3} e^{3} .
$$

Again, let $s=1, q=-2$; the integral is

$$
\begin{aligned}
\int_{0}^{R}\left(r^{2}+e^{2}\right)^{\frac{2}{2}} d r & =\int_{0}^{R}\left(r^{2}+\frac{3}{2} e^{2} r+\frac{3}{8} e^{4} r^{-1}+\ldots\right) \\
& =\frac{1}{4} R^{4}+\frac{3}{4} e^{9} R^{2}+\infty e^{4}+\ldots,
\end{aligned}
$$

C. IX.
viz. the integral is not thus obtainable: the series is right as far as it goes, but the true expansion contains a term as $e^{4} \log e$, and the failure is indicated by the infinite coefficients. In fact, the indefinite integral is

$$
\left(\frac{1}{4} r^{3}+\frac{5}{8} e^{2} r\right) \sqrt{ }\left(r^{2}+e^{2}\right)+\frac{3}{8} e^{4} \log \left\{r+\sqrt{ }\left(r^{2}+e^{2}\right)\right\},
$$

which between the limits is

$$
\begin{gathered}
\left(\frac{1}{4} R^{3}+\frac{5}{8} e^{2} R\right) \sqrt{ }\left(R^{2}+e^{2}\right)+\frac{3}{8} e^{4} \log \frac{R+\sqrt{ }\left(R^{2}+e^{2}\right)}{e}, \\
=\frac{1}{4} R^{4}+\frac{3}{4} e^{2} R^{2}+\ldots-\frac{3}{8} e^{4} \log e .
\end{gathered}
$$

In the general case, the term causing the failure is $K e^{-2 q}$ when q is fractional, and $K e^{-2 q} \log e$ when q is integral. As a step towards determining the entire expansion, I notice that, writing $x=\frac{e^{2}}{e^{2}+r^{2}}$ or $r=e x^{-\frac{1}{2}}(1-x)^{\frac{1}{2}}$, the value of the integral is

$$
=\frac{1}{2} e^{-2 q} \int_{X}^{1} x^{q-1}(1-x)^{\frac{1}{8-1}} d x,
$$

where

$$
X=\frac{e^{2}}{e^{2}+R^{2}}
$$

