600.

THEOREM ON THE nth ROOTS OF UNITY.

[From the Messenger of Mathematics, vol. Iv. (1875), p. 171.]
If n be an odd prime, and a an imaginary nth root of unity, then

$$
(-)^{\frac{1}{2}(n-1)} n-1=4\left\{\frac{\alpha}{1+a^{2}}+\frac{a^{2}}{1+\alpha^{4}}+\frac{a^{3}}{1+a^{6}} \cdots+\frac{a^{\frac{1}{1}(n-1)}}{1+a^{n-1}}\right\} ;
$$

for instance,

$$
n=3, \quad-4=4 \frac{\alpha}{1+\alpha^{2}},
$$

verified at once by means of the equation $1+\alpha+\alpha^{2}=0$:

$$
n=5, \quad 4=4\left(\frac{\alpha}{1+\alpha^{2}}+\frac{\alpha^{2}}{1+\alpha^{4}}\right),
$$

where the term in () is

$$
\frac{\alpha\left(1+\alpha^{4}\right)+\alpha^{2}\left(1+\alpha^{2}\right)}{\left(1+\alpha^{2}\right)\left(1+\alpha^{4}\right)}
$$

that is,

$$
=\frac{\alpha+1+\alpha^{2}+\alpha^{4}}{1+\alpha^{2}+\alpha^{4}+\alpha}, \quad=1:
$$

and so in other cases.

