601.

NOTE ON THE CASSINIAN.

[From the Messenger of Mathematics, vol. Iv. (1875), pp. 187, 188.]

A Symmetrical bicircular quartic has in general on the axis two nodofoci and four ordinary foci; viz. joining a nodofocus with either of the circular points at infinity, the joining line is a tangent to the curve at the circular point (and, this being a node of the curve, the tangent has there a three-pointic intersection): and joining an ordinary focus with either of the circular points at infinity, the joining line is at some other point a tangent to the curve, viz. an ordinary tangent of two-pointic intersection. In the case of the Cassinian, each circular point at infinity is a fleflecnode (node with an inflexion on each branch); of the four ordinary foci on the axis, one coincides with one nodofocus, another with the other nodofocus, and there remain only two ordinary foci on the axis; the so-called foci of the Cassinian are in fact the nodofoci, viz. each of these points is by what precedes a nodofocus plus an ordinary focus, and the line from either of these points to a circular point at infinity, quad tangent at a fleflecnode, has there a four-pointic intersection with the curve.

The analytical proof is very easy; writing the equation under the homogeneous form

$$
\left\{(x-a z)^{2}+y^{2}\right\}\left\{(x+a z)^{2}+y^{2}\right\}-c^{4} z^{4}=0,
$$

then the so-called foci are the points $(x=a z, y=0),(x=-a z, y=0)$; at either of these, say the first of them, the line drawn to one of the circular points at infinity is $x=a z+i y$, and substituting this value in the equation of the curve we obtain $z^{4}=0$, viz. the line is a tangent of four-pointic intersection; this implies that there is an inflexion at the point of contact on the branch touched by the line $x=a z+i y$; and there is similarly an inflexion at the point of contact on the branch touched by the line $x=-a z+i y$; viz. the circular point $x=i y, z=0$ is a fleflecnode; and similarly the circular point $x=-i y, z=0$, is also a fleflecnode.

To verify that there are on the axis only two ordinary foci, we write in the equation $x=\alpha z+i y$, and determine α by the condition that the resulting equation for y (which equation, by reason that the circular point $z=0, x=i y$, is a node, will be a quadric equation only) shall have two equal roots; the equation is in fact

$$
\left\{(\alpha-a)^{2} z^{2}+2(\alpha-a) i y z\right\}\left\{(\alpha+a)^{2} z^{2}-2(\alpha+a) i y z\right\}-c^{2} z^{4}=0,
$$

viz. throwing out the factor z^{2}, this is

$$
\left(\alpha^{2}-a^{2}\right)\{(\alpha-a) z+2 i y\}\{(\alpha+a) z+2 i y\}-c^{4} z^{2}=0,
$$

or, what is the same thing, it is

$$
\left(\alpha^{2}-a^{2}\right)\left\{(\alpha z+2 i y)^{2}-a^{2} z^{2}\right\}-c^{4} z^{2}=0,
$$

viz. it is

$$
(2 i y+\alpha z)^{2}-\left(a^{2}+\frac{c^{4}}{\alpha^{2}-a^{2}}\right) z^{2}=0
$$

The condition in order that this may have equal roots is

$$
a^{2}+\frac{c^{4}}{a^{2}-a^{2}}=0 \text {, that is, } a^{2}=a^{2}-\frac{c^{4}}{a^{2}} \text {; }
$$

hence α has only the two values $\pm \sqrt{ }\left(a^{2}-\frac{c^{4}}{a^{2}}\right)$, viz. there are only two ordinary foci.
c. IX.

