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Generalized solutions of dynamical equations in nonlinear theory 
of thin elastic shells 

A. CHRZ:E~SZCZYK (KIELCE) 

THE PROBLEM of existence of generalized solutions for a nonlinear system of partial differential 
equations describing the vibrations of thin inhombgeneous elastic shells is considered. The 
influence of initial deflections, initial stresses and temperature is taken into account. 

W pracy sformulowano i udowodniono twierdzenia o istnieniu, jednoznacznoSci i regulamosci 
uog6lnionych rozwi~zan nieliniowego ukladu r6wnan r6:Zniczkowych ~stkowych, opisuj~cego 
drgania cienkiej niejednorodnej powloki spr~zystej poddanej dzialaniu p61 ternperatury oraz 
obci(!zen zewn~trznych. lstnienia i regulamosci rozwi~zan dowodzi si~ konstruuj(!c rozwi(!zania 
przyblizone metod~ Faedo-Galerkina, dokonuj(!c odpowiednich oszacowan a priori tych roz­
wi~zan oraz wykazuj~c ich zbieznosc do rozwi~zania uog61nionego. JednoznaGznosc wyprowa­
dza si~ z odpowiedniej r6wnosci energetycznej. 

B pa6oTe c<l>opMyJmpoBaHbi H goKa3aHbi TeopeMhi ~eCTBOBamrn, eAffiiCTBeHHOCTH H pe­
ryJUipHOCTH o6o6~eHHhiX pemeHHH HeJIHHeHHOH c:H:creMbi gH<I><I>epeHUHaJibHbiX ypaBHeHHil 
B l.IaCTHbiX rrpOH3BOgffbiX, OIIHCbiBaiO~eH KOJie6aHIDI TOHKOH HeOgHOpOgHOH yrrpyrOH o6o­
JIOl.IKH, rrogBeprffYTOH geHCTBHIO noneil TeMnepaTyp, a TaK>Ke BHeiiiHHX Harpy3oK. C~ecrBo­
BaHHe H perymipHOCTb peiiieHHH goKa3biBaeTCH, CTpOH IIpH6JIH}f{eHHbie peiiieHIDI MeTOgOM 
<l>a3go-rarrepKHHa, npOH3BOgH COOTBeTCTBYIQ~He 01..\eHKH arrpHOpH 3THX peiiieHHH, a TaK>Ke 
goKa3biBaH HX cxogHMOCTb K o6o6~eHHoMy pemeHHIO. EAHHCTBeHHOCTb BbiBOgHTCH H3 co­
OTBeTCTByro~ero 3HepreTHl.IeCKOrO paBeHCTB~. 

1. Introduction 

THIS PAPER is concerned with the existence, uniqueness and regularity of generalized 
solutions of a pair of nonlinear fourth-order, partial differential equations with homo­
geneous boundary conditions and nonhomogeneous initial conditions, describing the 
vibrations of this inhomogeneous, prestressed, elastic shells with initial deflection and 
subjected to an arbitrary distribution of temperature. 

The problem of vibrations of a homogene~us plate, but without accounting for tem­
perature, initial stresses and initial deflections was dealt with in [1-3]. The procedure used 
in the ,present paper is similar to that in [1-3]. Through the paper we shall consider func­
tions of a point x = (x1 , x 2 ) of two-dimensional space R2 and time t. The symbol Q 
will denote a bounded domain of the space R2

, o!J its boundary arid ]0, T [- an open 
interval of R1

• The problem to be discussed deals with the following system of equations, 
see. (4] Eqs. (4.17) and (4.18)- in the static case.(!) 

(1.1) ehw-LIDow+LIID
1 
w+,uLI~1 w = L(w+w<0 >, F+F<0 >)+KF+p+,dMr, 

(1.2) LIID2 F-pL1~2F = - ~ L(w+2w<0
), w)-Kw-LI(NrD2), 

(1) The inclusion of terms ehw-L100w and Jt<0 > in Eqs. (1.1), (1.2) is explained in [9] and [10]. 
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where 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

(1.11) 

and 

o2J o2g o2J o2g o2J o2g 
L(f, g) = ox~ ox~ + OX~ oxf - 2 oxl ox2 oxl ox2 ' 

02 02 
Ll = ~+~- , 

uX 1 uX2 

.. o2w 
W=·--. ot 2 ' 

h/2 

D1 = 
1 
~ 2 J (x3-xg)2Edx3, 

fl -h/2 

h/2 

D 2 = ( f Edx3 r 1 , 

-h/2 

h/1 

MT= ~ J (x3-xg)E(Xdx3, 
fl -h/1 

h/1 

Nr = -
1
- J E(XTdx3 

1-fl -h/2 

(! = e(x1 , x2) the mass density, 
h = const > 0 the thickness of the shell, 

p, = const Poisson's ratio, 
a = a(x1 , x 2 , x 3) the coefficient of thermal expansion, 

T = T(x1 , x 2 , x 3) the temperature distribution, 

E = E(x1 , x 2 , x 3) Young's modulus, 
x~ the solution of the equation 

h/2 

J (x3-xg)Edx3 = 0, 
-h/2 

ki = ki(x1 , x 2 , t), the curvatures of the shell, 
i = 1, 2 

w<O> = w<O>(xt, x2) } . . . . . . . . 
F co> _ p<O>( ) the Imtial deflectiOn and the Initial stress functiOn, 

- Xt, x2 
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p = p(x1 , x 2 , t) the normal load, 

w = w(x1 ,x2,t)} 
F = F(x

1
, x

2
, t) the normal deflection and Airy stress function. · 

We shall consider the boundary conditions 

ow oF 
W=-=F= - =0 on o.Qx]O,T[ on on (1.12) 

(1.13) w(O) = w0 , W• ''0) - ow(O) - w t'n .Q 
\ -~- 1. ' 

(in general w0 =F w< 0 >). 

2. Some function spaces 

557 

Let .Q be a bounded domain in R2
• Let w;(.Q) (I= 0, 1,_2, ... ; 1 < p < oo) be the 

collection of all functions w on .Q which have generalized derivatives na. with respect to 
x 1, x 2 of all orders Ia I ~ I and lie in Lp(.Q) where 

For wE W~(.Q) we {iefine the norm 

llwll,,p = ( f }; IDa.wiPdxr'p. 
D lal.,.;l . 

01a1 
Da.=--­

ox~1ox~2 

By W~(.Q) we mean the closure in W~(.Q) of the set of all infinitely differentiable functions 
with compact support in .Q. 

By W;' (.Q) (/ = 0, 1 , 2, ... ; 1 < p < oo ), we denote the space of all continuous 

linear functionals on w:(.Q), _!_ + _!__ = 1. 
p g 

0 1 1 
If f E W;'(.Q), g E W~(.Q), - +- = 1, then (f, g) denotes the value of the linear 

p q 
functional fat g. If J, g E L 2 (.Q), then (f, g) = J fgdx. 

!} 

Let X be a Banach space with norm II· llx· Let LP(O, T; X) (1 ~ p ~ oo) be the space 
of functions f definec1 on [0, T] with values in X, strongly measurable over [0, T] and 
such, that 

11/IILP(O, T;X) < 00, 

where 
T 

(f llf(t)//~dt Y'p, 1 ~ p < oo; 
llf//LP(O, T;X) = 0 

supess 11/(t)llx, p = oo. 
te[O,T] 

Iff E LP (0, T; X), then the derivatives j, j, j,' . . . are to be understood in the vector­
valued distributional sense (see [5]). 
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3. Definition of a generalized solution 

Let us define the following bilinear forms: 

J eh
3 

( ocf> 01p ocf> 01p ) 
<3·1) Bo[cf>, 1jJ] = D 12 ox1 ox1 + ox2 ox2 dx, 

(3.2) Bdcf>, 1p] = BtD.(cf>, 1p]+,uBD.(cf>~ 1p], 

(3.3) 

where 

(3:4) f ( ()2cp ()21p ()2cp ()21p ()2cp ()21p) 
BIG[cf>,VJ]= D ,G oxf oxf+ 2 ax1ox2 ox1ox2 +ox~ ox~ dx, 

j. ( (J2cp ()21p ()2cp ()21p ()2cp ()21p .) 
BG[cf>, VJl = G ~~-2 a a ·a-a-+1J2~ dx, 

D ux1 x2 x1 x2 x1 x2 x2 x1 

(3.5) 

G E {D1 , D2} . . 

Let us suppose that e,-D 1 , D2 E Loo (Q)< 2 >, k 1 , k 2 E L 00 (Q x ]0, TD; w< 0 >, F< 0> E Wi (Q); 
p E L2(0, T; W2 2(D)); L1Mr, L1(NrD2) E W2 2JD). 

DEFINITION 1. A pair of functions w, FE L00(0, T; Wi(D)) such that wE L00(0, T; 
W4 (Q)) is said · to be a generalized solution of the problem (1.1 ), (1.2), (1.12), (1.1 ~) if it 
satisfies the integral identities 

T T T 

- J (ehw(t), i](t))dt- J Bo[w (t), i](t)]dt+ J B1[w(t), 1J(t)]dt 
0 0 0 

T T 

= f (L(w(t)+w< 0 >, F(t)+F< 0 >), 1}(t))dt+ f (KF(t), 1}(t))dt 
0 0 

T T 

+ J (p(t), 1}(t) )dt+ J (L1Mr, 1}(t) )dt+ (ehw1, 1}(0) )+ Bo[wt, 1}(0)], 
0 0 (3.6) 

T T 

(3:7) f B2 [F(t), 1p(t)]dt = - ~ J (L(w(t)+2w< 0 >, w(t)), 1p(t))dt 
0 0 

T T 

-·J (Kw(t), 1p(t))dt-J (L1(NrD2), 1p(t))dt, V1p E L2(0, T; WHD)), 
0 0 

and the condition 

(3.8) w(O) = w0 , in the sense explained in [3]. 

A correctness of the condition (3.8) can be justified in a manner similar to that for an 
isothermal homogeneous plate (see [3]). 

(2) IE Loo(Q), (Q = Q or Q = Q x ]0, T[ if 1/(z) ~ const for a.e: z E Q. 
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4. Existence of generalized solutions 

Let us suppose that 

(1\.I) !J c: ~2 

is a bounded domain having the cone property ([6] p. 66), 

(i\.2) w<0>, p<O> E WH!J), ffp<O> E L00 (!J), lex! = I, 

(i\.3) w0 E WH!J), Wt E WH!J), 

(i\.4) p E L2 (0, T; W2 1(!J)), L1MT E W2 1 (!J), 

L1(NTD2) E W2 2(!J), 
p • 

(i\.5) D kh k, E L 00 (!J X ]0, TO, 1,81 ~ I, i = I, 2. 

(i\.6) There exist positive constants c1, i = I, 2, 3, 4 such that 

c.l ~ (! ~ c2, 
c3 ~· E~ c4 • 

We have the following result: 
THEOREM 1. If the conditions (i\.1 )-(i\.6) are satisfied, then there exists at least one 

generalized solution of. the problem (I .I), (1.2), (1.12), (l.I3). 
Proof. The proof is realized in three steps (see [2]). 

I. 

Using the Faedo-Galerkin method we construct an approximate solution (wm, Fm) 

in such a way that Wm is postulated in the form 

(4.1) 

m . 

Wm = 2 gimc/Jt, 
i=l 

where the cpi, i = 1, 2, ... form a basis in the space WH!J) (i.e. the set of all linear combi­

nations of functions ¢ 1 is dense in WH!J)). The gim are real-valued funtions oft E [0, T] 

that satisfy the Faedo-Galerkin system of ordinary differential equations 

(4.2) (ehwm(t), ¢1)+B0 [wm(t), ¢1]-tB1 [wm(t), ¢1] 

= (L(wm(t)+w< 0 >, Fm(t)+F<0>),¢J)+ (KFm(t), ¢J) 

+ (p(t)+L1MT, cf>1), 1 ~ j ~ m, 

tpgether with the initial conditions 

(4.3) wm(O) = Wom, 

( 4.4) Wm(O) = Wlm, 

where w1m, i = 0, 1 is the orthogonal projection of w; upon the space spanned by 

{¢1, .: .,c/Jm}• 
The function Fm on the right-hand side of Eq. (4.2) is the unique solution of the follow­

ing generalized Dirichlet problem: 

~i4.5) B2 [Fm(t), ¢] = - ~ (L(wm(t)+2w<0 >, Wm(t)), ¢) . 

- (Kwm(t)+LI(NTD2), ¢ ), V¢ E W~(!J), (see [7] p. 99). 
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The existence of local solutions of the problem (4.2), (4.3), (4.4) follows from the general 
theory of ordinary differential equations. 

~ 

n. 

We obtain a priori estimates for the approximate solution. By multiplying t}J.e j-th 
equation of Eqs. (4.2) by Kim and taking the sum with respect to j we obtain 

(4.6) (ehwm(t), wm(t))+B0 [wm(t), wm(t)]+B1 [wm(t), wm(t)] 

= (L(wm(t), Fm(t) ), wm(t)) + (L (w< 0 >, Fm(t) ), wm(t)) 

+(L(wm(t)+w<0 >, p<O>), wm(t))+ (KFm(t), wm(t))+ (p(t)+L1MT, wm(t) ). 

By differentiating Eq. (4.5) with respect to t and putting 4> = Fm(t) we obtain 

(4.7) B2 [Fm(t), Fm(t)] = -(L(wm(t), wm(t) ), Fm(t)) 

_ -(L(w<0 >, wm(t)), Fm(t))- ( (Kwm(t))", Fm(t)). 

By adding Eqs. (4.6) and (4.7) together side by side and integrating over [0, t] we arrive 
at the following equality: 

. (4.8) ~ ((ehwm(t), wm(t) )+ B0 [li,·m(t), wm(t)] + Btfwm(t), Wm(t)] 

+B2 [Fm(t), Fm(t)l) = ~ ( (ehwm(O), wm(O))+Bo[wm(O), wm(O)] 

t 

+Bt[wm(O), Wm(O)]+B2[Fm(O), Fm(O)l) + J (L(wm(s)+w<O>, p<O>), wm(s)) ds 
0 

t t t . 

+ f (KFm(s), wm(s))ds- f ((Kwm(s))", Fm(s))ds+ f (p(s)+L1Mn wm(s))ds. 
0 0 0 

From Eq. (A.3) we have the estimate 

(4.9) {i,>hwm(O), wm(O))+Bo[wm(O), wm(O)]+l!dwm(O), Wm(O)]+B2[Fm(O), Fm(O)] ~ const~ 

As in [I] we can prove that the following simple inequalities hold: (chi= 5, 6, ... the 
positive constants) 

(4.10) (L(wm(s)+w<0 >, p<O>), wm(s)) ~ csllwm(s)+w<0 >ll 2,2 

x llwm(s)llt,2(}; IIDapco>IILoo<.CJ>) ~ c611wm(s)ll2,211wm(s)llt,2 
Jcx J=l 

+c7llwm(s)llt,2 ~ cs + c9(11wm(s)llt2 + llwm(s)III .z), 
(4.11) ( (Kwm(s) )", Fm(s)} ~ Cto (llwm(s)llt2 + llwm(s)lli.2 + IIFm(s)llt2), 

(4.12) (KFm(s), wm(s)) ~ Cu (llwm(s)llt2 + llwm(s)lli.2 + IIF(s)llt2), 

(4.13) 

From Eq. (A.6) we have 

(4 14) . ( ) 2 • ( 2 2 ( ) 2 · llwm-s llo,2+llwm s)llt,2+llwm(s)II2,2+IIFm S ll2,2 

~ c14((ehwm(s), wm(s))+B0 [wm(s), wm(s)]+B1 [wm(s), wm(s)]+B2[Fm(s), Fm(s)]). 
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The relations (4.8)-(4.14) imply 

(4.15) l!wm(t)ll5,2 + l!wm(t)lli.2 + llwm(t)llt2 + l1Fm(t)llt2 ~ C1s 
I 

+ct6 J ( ll wm(s)l l5.2 + llwm(s)lli.2 + llwm(s)llt2 + IIFm(s)llt2)ds. 
0 

Due to Gronwall's inequality (see [5] p. 298) we have 

(4.16) llwm(t)llt,2 ~ const, llwm(t)ll2,2 ;:; const, 1!Fm(t)ll2.2 ~ const. 

From the estimate (4.16) we conclude that the local solutions of Eqs. (4.2), (4.3), and 

(4.4) can be extended over the entire interval [0, T]. 

ID. Passage to the limit 

Another conclusion from the estimates ( 4.16)' is that it is possible to choose subse­

quences Wic and Fk with the following properties: 

~vk -----* w weakly star in L 00 (0, T; WH.Q)),(3) 
k-+oo 

(4.17) wk - -+ w weakly star in L 00 (0, T; Wi(.Q)), 
k-+ 00 

Fk --+ F weakly star in L 00 (0, T; Wi(.Q)), 
k-+ 00 

for some w,FEL00(0, T; Wi(Q)), wEL00 (0 , T; Wi(.Q)). 
Let the functions "Pi> 1 ~ j ~ j 0 belong to the space C 1 ([0, T]) and satisfy the condi­

tion "Pi(T) = 0. Let us assume that 
h 

r;(x, t) = ~ "PJ (t)¢ 1(x). 
i = l 

From the equality ( 4.2) it follows that for m = k > j 0 we have 

T T T 

(4.18) - .f (ehwk(t), i](t))d{- J Bo[wk(t), i](t)]dt+ J Bdwk(t), r;(t)]dt 
0 0 0 

T T 

= J (L(wk(t)+w< 0 >, Fk(t)+F< 0 >), r;(t))dt+ .r (KFk(t), r;(t))dt 
0 0 

T 

+ .r (p(t)+L1MT, r;(t))dt+ (ehwlk, r;(O))+Bo[wtb r;(O)]. 
0 

By taking the limit of both sides of Eq. (4.18) and using the arguments similar to that 

iJJ. [2] p. 62 we copclude that the functions w, F satisfy the conditions (3.6) and (3. 7) of 

the definition 1. A verification of the condition (3.8) is Very similar to that in [2]. Thus 

we see that the pair w, F is the generalized solution of the problem (1.1), (1.2), (1.12), 

(1.13), q.e.d. 

(3) If X is the reflexive Banach space and X* its dual space, then f,-+ /weakly star in L 00 (0, T; X) if 

T T 
j (f,,(t); q;(l)) dt-+ j (f(t), q;(t))dt, \fq; E V (0, T; X*). 

0 0 
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5. Uniqueness of the generalized solution 
' 

By imposing somewhat stronger requirments on the "data" we can prove that the 
generalized solution of the problem (1.1), (1.2), (1.12), (1.13) is unique. To be more pre­
cise, let us suppose that in addition to Eqs. (A.1 )-(A.6) the following assumptions are 
satisfied: 
(A.7) 

(A.8) 

(A.9) 

(A.IO) 

!J c R 2 is of class C3, 

p<O> E w;(!J) }' 
I < p < 2, 

L1(NTD2) E W; 1 (!J) 

E E C1 (D). 

THEOREM 2. If the conditions (A.I)-(A.IO) are satisfied, then there exists one and only 
one generalized solution of the problem (I.I), (1.2), (I.I2), (l.I3). 

Proof. Let {w1 , F1 } and {w2 , F2 } be two possible generalized solutions. If we set 
w ·= w1 -w2, i = ;1 -F2, then from Eqs. (3.6), (3.7) it follows that 

T T T 

(5.I) - J (eh~,~)dt-J B0 [~,~]dt+ J Bd~;,1J]dt 
0 0 0 

T T 

= f (L(wJ +w<0 >, F')~ n)dt+ f (L(w, F2+F< 0 >), n)dt 
0 0 

T 

+ J (KF, n)dt, Vn e V (see (3.6)), 
0 

T T 

J A. If< A A A ) f5.2) B2 [F, 1pfdt = 2 L(w-2w1 -2w<0 >, w), 1p dt 
0 0 

T 

-J (Kw,1p)dt, V1pEL2 (o, r; wHD)), 
0 

(5.3) w(o) = o. 
-A simple generalization of considerations of the paper [2] gives 

}e L00 (0, T; W2 1(!J)), 
A A A 

llf(t)ll-t.2 ~ ctllw(t)lil.2 a.e.on [0, T], 
(5.4) 

where 

f= L(w1 +w<0>,F)+L(w, F~+F<0>)-KF, c1 > 0-a constant. 

By using the procedure similar to that used i.n [2] we can prove that the following equality 
holds true: 

t 

(5.5) ~ ((eh~(t), ~(t))+~o[~(t), ~(t)]+Bdw(t), w(t)]) = J (j(C1), ~(C1})dct. 
0 

According to the inequality (5.4) we have 
t - t 

(5.6) j(J(C1), ~(C1})dC1 ~ c2f (IJw(C1)11i.2+li~(O:)IIi.2)dC1. 
0 0 . 
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The assumption (A.6) implies 

(5.7) II~Ct)ll~.2 + II~Ct)llt2 + llw(t)lli.2 

~ cJ((eh~(t), ~(t))+B0 [~(t), ~(t)]+Bdw(t), w(t)l). 

The relations (5.5)-(5.7) give the estimate 
t 

(5.8) ll~(t)115,2+11,i,(t)llf.2+11,i,(t)llt2 ~ c4J (ll;v(s)ll5,2+11;v(s)llt2+ ll,i,(s)llt2)ds. 
0 

Thus w = 0, F = 0 and the theorem is proved. 

6. Regularity of the generalized solution 

Concerning the regularity of the generalized solution of the problem (1.1), (1.2), (1.12), 
(1.13), we have the following result. Let us suppose that the conditions (A.l)-(A.10) are 
satisfied and consider the following new asumptions. 

Q is the bounded domain of class C4 , 

w< 0 >, F< 0 >, w0 E WH.Q), w1 E Wi(.Q), 

(A.ll) 

(A.l2) 

(A.13) 

(A.14) 

p E L 2 (0, T; W2 1 (.Q) ), t1(NTD2 ) E Lr(.Q), 2 < r < 00, 

p· 
DkiELco(.Qx]O,TD, 1/11~1, i=l,2. 

THEOREM 3. If the conditions (A.1)-(A.14) are satisfied, then there exists one and only 
one generalized solution of the problem (l.l), (1.2), (1.12), (1.13) with the property 

wE Leo (0, T; Wi(Q)n Wl(.Q) ), 

wE L00 (0, T; Wi(Q)), 

WE L 00 (0, T; WJ(.Q)), 
(6.1) 

FEL00 (0,T; Wi(.Q)nw:(.Q)), 2 < r < oo. 

Proof 

I. Approximate solutions 

Let us suppose that the set {</>i }i= 1., 2 , .. . is a basis in the space Wi(Q) n Wi(Q). As 
in the proof of Theorem 1 we may construct the Faedo-Galerkin approximations 
Wm, Fm satisfying the a priori estimates (4.16). 

11. A priori estimates 

We shall show that due to the assumptions (A.l)-(A.13), the following estimates 
hold: 

(6.2) 
lfwm(t)llt.2 ~ c, 

. llwm(t)ll2.2 ~ c, 
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where c is a positive constant. 
By putting in Eq. (4.2) t = 0, multiplying the j-th equation of Eqs. (4.2) by gim(O) 

and taking the sum wiht respect to j, we obtain 

(6.3) (ehwm(O), wm(O) )+ B0 [wm(O), wm(O)] + B1 [wm(O), wm(O)] 

= (L(wm(O)+w< 0 >, Fm(O)+F< 0 >), wm(O))+ (KFm(O), wm(O)) 

. + (p(O)+LIM~, wm(O)). 

It follows that {C;, i = 1, 2, ... -the positive constants) 

(6.4) clllwm(O)IIi. 2 ~ c2(1lwm(O)II3,2 + llwm(O) + w< 0 >)113,211Fm(O) + p<o)ll2,2 

+ IIFm(O)IIl,2 + llp(O)+L1MT11-L2)1lwm(O)IIl,2 

and due to the assumptions of Theorem 3, 

(6.5) 

Let us now differentiate Eq. (4.2) with respect to t. We obtain 

(6.6) (ehw~(t), </>j)+Bo[w~(t), ¢j]+B1 [wm(t), </>i] 

= L(wm(t)+w<0
J, Fm(t)+F<0 >r,cJ>J}+((KFm(t))",¢i)+ (p(t),</>1). 

By multiplying the j-th equation of Eq. (6.6) by gim(t), taking the sum over j, 1 ~ j ~ m 
and integrayng over [0, t] we arrive at the relation 

(6.7) ~ ((ehwm(t), wm(t))+B0 [wm(t), wm(t)]+Bdwm(t), wm(t)l)) 

= ~ ((ehwm(O), wm(O))+B0 [wm(O), wm(O)]+Bl[wm(O), wm(O)l) 

t I 

+ f(L(wm(s), Fm(s)+F< 0 >), wm(s))ds+ J((KFm(s))", wm(s))ds 
0 0 

I t 

+ J (L(wm(s)+ w< 0 >, Fm(s)), wm(s))ds+ J (p(s), wm(s))ds. 
0 0 

The assumptions (A.6) imply the inequality 

(6.8) c4 (llwm(t)ll6.2 + llwm(t)lli.2 + llwm(t)llt2) 

~ (ehwm(t), wm(t) )+ B0 [wm(t), wm(t)] + Bdwm(t), wm(t)]. 

By using the Sobolev Imbedding Theorem we can deduce the estimates (1 < p < 2) 

(6.9) L(wm(s), Fm(s)+F< 0 >), wm(s)) ~ Csllwm(s)ll2,2 (}; maxiD(X(Fm(s)+F<O>) I 
IIX I= 1 

X llwm(s)lll,2 ~ c6 (IIF< 0~1l3,p+ 11Fm(s)ll3,p)llwm(s)ll2.211wm(s)lll.2• 

(6.10) (L(wm(s) + w<O>' Fm(s) ), wm(s)) ~ c7 (llwm(s)ll2,2 + llw(O)II2,2) IIFm(s)ll3,p l!wm(s)llt,2. 

Due to Agmon's Regularity._ Theorem for Dirichlet's boundary-value problem (see [8]) 

and due to the estimates ( 4.16) we have 
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(6.11) I!Fm(s)[[,,, " c,( ~ llwm(s)+2w'0 '11z., [IWm(s) ll 2.2 

+ [[Kwm(s)[[_,,,+ [[LI(NTD2 ) [[_ 1 ,,) ,;; cons! , 

(6.12) IIFm(s) ll3,p ~ c9 ( ll wm(s) + w<O> ii 2,2 1i wm(s)li2. 2 +II (Kwm(s))· ll -t,p 

~ C1o + Cu llwm(s)ll2,2. 
As in Eqs. ( 4.11 )-( 4.13) we deduce also 

(6.13) ( (KFm(s) )", wm(s)} ~ Ctz +c13 (llwm(s) ll t2 + ilwm(s) ilf.2), 

(6.14) (p(s), wm(s)) ~ cl4 +clsllwm(s)ll i.2. 

By using the inequalities (6.9)-(6.14), it is not hard to prove that the right-hand side of 
Eq. (6.7) is no greater than 

t 

c16 + c17 J (llwm(s) ll6,2 + llwm(s)l lf.2 + ll ~vm(s) l l~. 2)ds 
0 

and, consequently, the following relation holds: 

(6.15)_ llwm(t) ii6,2 + llwm(t) ili ,2 + flwm(t)llt2 
t 

~ c1s +c19 J (ll wm(s)llg,2 + ll wm(s) ll i.2 + ll wm(s)m,2)ds. 
0 

Due to Gronwall's Lemma we have the inequalities (6.2). 

III. Passage to the limit 

Arguing as in the proof of Theorem 1 we can select subsequences W11 , F11 such that 

w - 4 W weakly star in VX)(O, T; WH.Q)), 
11 11-HlO 

w-4 w weakly star in L00 (0, T; WH.Q)), 
(6.16) 

II 11-+00 

w-4 W weakly star in L 00 (0, T; WH.Q)), 
II 11-+00 

F.-4 F 
II 11-+00 

weakly star in L 00 (0,T; WH.Q)). 

Similarly as in the proof of Theorem 1 we can show that the functions w, F form a general­
ized solution of our problem~ Let us write Eq. (1.1) in the form 

(6.17) L1iD
1 
w+,uL1_5

1 
w = L(w+w<0 >, F+F< 0>)+KF+p+L1MT-ehw+L1Dow =h. 

Due to Eq. (6.16) we have 

(6.18) ' 

The regularity theory for generalized solutions of the Dirichlet problem (see [?1 for' 
example) implies 

We have also 
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1 . 
- 2 L(w+2w<0 >, w)-Kw-LI(NrD 2 ) EL00 (0, T; L,(Q)), r > 2. 

By applying the Regularity Theorem of [8] to Eq. (1.2) we obtain 

FE L00 (0, T) w:(Q)n Wi(Q)). 

The proof is complete. 
From Theorem 3 it follows that the functions w, F satisfy the boundary conditions 

(1.12) in the classical sense. This is due to the inclusion W~(Q) c C1 (Q) and the Lemma 
9.1 of [7]. Secondly, the relations (6.1) enable us to conclude that in the shell under 
consideration there exists a classical stress tensor with the components of class C1 (Q). 
In fact, the assertion follows from the inclusion w:(Q) c C 3 (Q), r > 2 and the relations 

h/2 

cPF f 
ox2 = (122dx3' 

1 
-h/2 
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