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Generalized solutions of dynamical equations in nonlinear theory
of thin elastic shells

A. CHRZESZCZYK (KIELCE)

THE PrROBLEM Of existence of generalized solutions for a nonlinear system of partial differential
equations describing the vibrations of thin inhomogeneous elastic shells is considered. The
. influence of initial deflections, initial stresses and temperature is taken into account.

W pracy sformulowano i udowodniono twierdzenia o istnieniu, jednoznacznosci i regularnosci
uogolnionych rozwigzan nieliniowego ukiadu réwnan roézniczkowych czastkowych, opisujacego
drgania cienkiej niejednorodnej powloki spre¢zystej poddanej dzialaniu pél temperatury oraz
obciazen zewnetrznych. Istnienia i regularnosci rozwigzan dowodzi si¢ konstruujac rozwigzania
przyblizone metoda Faedo-Galerkina, dokonujac odpowiednich oszacowan a priori tych roz-
wigzan oraz wykazujac ich zbiezno$¢ do rozwiazania uogélnionego. Jednoznacznos¢ wyprowa-
dza si¢ z odpowiedniej réwnosci energetyczne;j.

B pabote chopmynupoBaHEI H JOKa3aHBI TEOPEMBI CYILECTBOBAHMA, €JUHCTBEHHOCTH M pe-
TYJISIPHOCTH OOOOILEHHbIX pellleHHH HeJMHeHHOH cHucTembl NubdepeHIHanbHbIX YpaBHEHHIA
B Y4aCTHBIX IIPOHM3BOOHBLIX, ONHCBHIBaIoOlleil KoJjiebaHHs TOHKOH HeOoJHOpPOIHON ympyroit o6o-
JIOUKH, IIOJABEPTHYTOH AEHCTBHIO IOJIeil TEMIIEPATYP, a8 TAKXKe BHEIUHMX Harpysok. CyliecTBo-
BaHHE H DPEryJIsIPHOCTh PELIEHHH J0Ka3blBAaETCHA, CTPOSA NPUOIIKEHHBIE PEIIeHHUS METOIOM
Pasgo-TI'anepkuHa, IPOU3BOAS COOTBETCTBYIOLME OLEHKH ANPHOPH 3THX PELICHMH, a TaKKe
JIOKasbIBasd MX CXOOHUMOCTh K 0000LIeHHOMY pellleHHIo. EQUMHCTBEHHOCTh BBIBOJIUTCA M3 CO-
OTBETCTBYIOIIETO 3HEPreTHYECKOro PaBeHCTBA.

1. Introduction

THis PAPER is concerned with the existence, uniqueness and regularity of generalized
solutions of a pair of nonlinear fourth-order, partial differential equations with homo-
geneous boundary conditions and nonhomogeneous initial conditions, describing the
vibrations of this inhomogeneous, prestressed, elastic shells with initial deflection and
subjected to an arbitrary distribution of temperature.

The problem of vibrations of a homogeneous plate, but without accounting for tem-
perature, initial stresses and initial deflections was dealt with in [1-3). The procedure used
in the present paper is similar to that in [1-3]. Through the paper we shall consider func-
tions of a point x = (x,, x,) of two-dimensional space R? and time t. The symbol Q2
will denote a bounded domain of the space R?, 0Q its boundary and 10, T[—an open
interval of R'. The problem to be discussed deals with the following system of equations,
see. [4] Eqs. (4.17) and (4.18) —in the static case.(!)

(L1)  ghib—Ap,iv+ 425, wtpudd,w = L(w+w®, F+ FO)+ KF+p+AMy,
(1.2 Ay F—ud3 F = — lL(w-{-2w(°’, w)—Kw—A(NrD,),
F—udb, 5

(*) The inclusion of terms ghw—Adp, w and F® in Egs. (1.1), (1.2) is explained in [9] and [10].
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and

o = o(xy, x;) the mass density,
h = const > 0 the thickness of the shell,
u = const Poisson’s ratio,
o« = a(xy, X5, x3) the coefficient of thermal expansion,
T = T(x,, x5, x3) the temperature distribution,
E = E(x,, x,, x3) Young’s modulus,
x5 the solution of the equation

h|2
[ (xs—x)Edxs =0,
_h2
k; = ki(x,, x,, t), the curvatures of the shell,

i=1,2
W = w®(x,, x,)

the initial deflection and the initial stress function,
FO® = FO(xy, x;) } e
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p = p(xy, x,,1) the normal load,

w = w(x;, Xz, 1) . _ )
F=F(x;, X, 1) the normal deflection and Airy stress function.

We shall consider the boundary conditions
ow oF

(1.12) W=W=F=a_n:0 on B.QX]O,T[
and the initial conditions (wo = wo(x;, x3), Wy = w(xy, x3), (x;, x;) € Q)
(1.13) w(0) = wo, w(0) = awa(tO) =w, in £,

(in general wy # W),

2. Some function spaces

Let £ be a bounded domain in R?. Let W)i(2) (/! =0,1,2,...;1 < p < ) be the
collection of all functions w on £ which have generalized derivatives D* with respect to
X1, X of all orders |x| < / and lie in L,(£2) where
gl
a=(oc1,oz2), otl,az=(),l,2,..., ]a[zal—i-cxz, Da:ﬁx"‘ll—aﬂ‘?‘

For we W,(2) we define the norm

wllo= ([ D 1D*wlrax)”.

2 |aj<l ‘ )
By PGV;(Q) we mean the closure in W}(£2) of the set of all infinitely differentiable functions
with compact support in £,
By W,;'(22) !=0,1,2,...;1 < p < =), we denote the space of all continuous
linear functionals on W}(R), L -

o 1
If fe W;'(RQ), ge WD), ;+$ = 1, then (f,g) denotes the value of the linear

functional f at g. If £, g € L,(R), then (f,g) = [ fedx.
2

Let X be a Banach space with norm || - ||x. Let L?(0, T; X) (1 < p < o) be the space
of functions f defined on [0, T] with values in X, strongly measurable over [0, 7] and
such, that

[ fllceo, ;) < 0,
where

T
([ nrongal)”, 1<p <o,
I fllceo, 130 = {1 0

supess || f(1)|]x, p= .
te[0,T]

If fe LP(0, T; X), then the derivatives £, f, f, ... are to be understood in the vector—
valued distributional sense (see [5]).
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3. Definition of a generalized solution

Let us define the following bilinear forms:

@a.1) Bolg, v] = f9h3(3¢ e . ﬂ)dx,

ox, 0x; = Ox, 0x,

(32) Bl[d’! V’] = BID1[¢s "P]+HBDI[¢3 VJ]’
(3.3) B,[¢,y] = B p, [, W]—#BD,[(f?: vl,
where
‘ _ % %y % oy % 0%y
(3:4) Bigle, y] = nf‘G( ox? ox2 42 Bxy B 8, 0%, S ox2 ox2 )a’x,

(3.5) Bsld, v = fG(ng &y % Py P Bzw)dx,
02

x2 OxZ Ox,0x; O0x,0x, & Ox2 ox2
Ge {D,,D,}.

Let us suppose that g, Dy, D, € Lo(2)?, k,, k, € L,(2x]0, T); w®, F® ¢ W%(Q);
peL*0, T; W3*(Q)); AMy, A(Ny D,) € W3(Q).

DEFINITION 1. A pair of functions w, F e L*(0, T; W3(8)) such that we L*(0, T;
Wz(.Q)) is said to be a generalized solution of the problem (1.1), (1.2), (1.12), (1.13) if it
satisfies the integral identities

T T T
—Of (ehiv(e), i(0))de— [ Boli (1), #(0)]dt+ [ By[w(z), n(t)ar
0 0

T

T
J (L) +w, )+ F@), n@)dt+ [ (KF(r), n())dr
0 0

T T
a5 + [ (@), n@)di+ [ (AMy, n(2))di+ (ohwy, 7(0))+ Bolwy, 70,
; ] ]

VneV = {neL0, T; Wi):9 € L2(0, T; W 1()), 5(T) = 0},

7
1
3.7 Of B, [F(t), w(t)ldt = —56{ (L‘(w(z)+2w(°), w(t)), qp(t))dt

T T

—f (Kw(1), y)(t))dt—f (AN Dy), w())dt, VypeL?*(0,T; W),
0 0

and the condition

(3.8) w(0) = wy,  in the sense explained in [3].
A correctness of the condition (3.8) can be justified in a manner similar to that for an

isothermal homogeneous plate (see [3]).

() feLo(Q), (Q =2 or Q = 2x]0, T[ if | f(z) < const for a.e. z€Q.
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4, Existence of generalized solutions

Let us suppose that ¢
A1) 2 c R?
is a bounded domain having the cone property ([6] p. 66),
(A2) W, FO e W3(Q), DF®eL,(@), la=1,
(A3) wo € W3Q), wy e WiQ),
(A4d) peL*(0,T; W3'(9), AMpe W3'(Q),
A(NzDy) € W3(Q),
(A.5) Dk, ke Lo(2x]0,TD, 181<1, i=1,2.
(A.6) There exist positive constants ¢;, i = 1, 2, 3, 4 such that
g << Gy,
&2 E <6

We have the following result:

THEOREM 1. If the conditions (A.1)-(A.6) are satisfied, then there exists at least one
generalized solution of the problem (1.1), (1.2), (1.12), (1.13).

Proof. The proof is realized in three steps (see [2]).

L

Using the Faedo-Galerkin method we construct an approximate solution (W, Fy)
in such a way that w, is postulated in the form

- K
@1 _ Wu = D Binbis
i=1

where the ¢;,i = 1,2, ... form a basis in the space W2(£) (i.e. the set of all linear combi-
nations of functions ¢; is dense in W3(£)). The g;,, are real-valued funtions of ¢ € [0, T
that satisfy the Faedo-Galerkin system of ordinary differential equations
4.2)  (ohWn(t), ds)+ Bo[wn(t), 51+ By [wn(r), ¢,1

= (L (walt)+ W, Fo()+F®), )+ (KEu(D), ¢;)

+(p(O)+AMr,¢;), 1<j<m,

together with the initial conditions '
“4.3) Wn(0) = Wom,
4.4 Wn(0) = Wypm,
where wy,, i = 0, 1 is the orthogonal projection of w; upon the space spanned by

{¢ls e d)m}-
The function F,, on the right-hand side of Eq. (4.2) is the unique solution of the follow-
ing generalized Dirichlet problem:

@) BalFa(0), 6] = — o (L) + 20, wa(0)), 0)
— (Kwn()+A(N1Dy),¢), V¢ € WD), (see [7] p. 99).
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The existence of local solutions of the problem (4.2), (4.3), (4.4) follows from the genera!
theory of ordinary differential equations.
N

IL
We obtain a priori estimates for the approximate solution. By multiplying the j-th
equation of Egs. (4.2) by g;» and taking the sum with respect to j we obtain
(4.6)  (ohitn(t), Wn())+ Bo[#m(1), Wl )]+ By [Wn(2), ¥ (0)]
= (LOwm(0), En()), W) + (LW, Fo(1)), (1))
+ (L (w(0) + W@, FO), 35, (1)) + (KFu(t), Wn(0))+ (p(1) + AMr, ion(2) ).
By differentiating Eq. (4.5) with respect to ¢ and putting ¢ = F,(¢) we obtain
@) BylFu(®), Fu(®)] = —(L(#u(®), Wu(?)), Ful?)
— (L, Wom®)), Ful®)) — ((KWm(®))', Fu(2)).
By adding Eqs. (4.6) and (4.7) together side by side and integrating over [0, t] we arrive
at the following equality:
@8) (@), W)+ Bolin(), W]+ Bl (1), (0]

FBaEn(1), Fnl0]) = 5 (0h0(0), #0(0)) + Bo[70(0), (O]

+ By W(0), WO+ B2 [F(0), FuO)]) + [ (L(wi(5)+ W@, FO), 3, (5)) dis

t 1

+ f(KF,,,(s), fvm(s))ds—f((me(s))', F,,,(s))ds-l—f (p() +AM7, Wy(s))ds.
0 0 0

From Eq. (A.3) we have the estimate
(49) (@h'ﬁ’m(()), ‘:Vm(o))+B0 [wm(o)a Ir"Vm(O)] + Bl [Wm(0)9 wm(o)] + BZ [Fm(o) s FM(O)] S const.

As in [1] we can prove that the following simple inequalities hold: (¢;, i = 5, 6, ... the
positive constants)

(4.10) (L (#m(s)+w®, F©), tin(s)) < sl1wn(s)+w Ol

X 1Wn($)llz,2( > 1D FO @) <€ ol Wn(Sllz,al ()12

|| =1
+cqlWm(S)l1,2 < Cs+¢'9(”wm(5)”%.2+”wm(-s')Hf.z),
@11 ((KW(6))", Fu()) < €10 (11Wm()I1Z2+ [[0n(I1F.2 + | Fm6)][2,2)
“.12) (KFn(9), Wm(5)) < €11 (I1Wn®I1Z,2 + W) ,2 + IFOII5,2)s
(4.13) (PO +AMz, Wals)) < c1z+ 13l Wal)IlE,2.

From Eq. (A.6) we have
(414) ”V.Vm(s)||c2).z+ ”‘:VM(S)H%,Z + Ilwm(S)H%.z + ”Fm(s)||;,2
< Cl4((Qh‘:Vm(S)’ V-Vm(S))+BO [|7vm(s), P'V,,,(S)]-FBI [Wm(S), Wm(s)]'l"Bz [Fm(s)9 Fm(s)]) .
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The relations (4.8)-(4.14) imply
4.15) W12+ 1om®I1, 2+ [1Wa(DI3, 2 +IFa(®)]3,2 < Cys

+c16 | (10nNI3 2+ 18m(F, 2+ [[WnOI[3,2 + [ Fn(s)] 13,2 )ds-
0

Due to Gronwall’s inequality (see [5] p. 298) we have
(4.16) [[Wa(®ll1,2 < const,  [[wu(D)ll2,2 < const,  [|Fa(0)ll,2 < const.

From the estimate (4.16) we conclude that the local solutions of Egs. (4.2), (4.3), and
(4.4) can be extended over the entire interval [0, T].

III. Passage to the limit

Another conclusion from the estimates (4.16) is that it is possible to choose subse-
quences w, and F, with the following properties:

W, ——w  weakly star in  L*(0, T; Hof'é(.Q)),P)

ks

(4.17) we———w weakly star in  L*(0, T; W3(Q)),

k-2
F, »kr———>F weakly star in  L*(0, T; Vlo/f(.Q)),
for some w, Fe L*(0, T; ﬁ/ﬁ(!?)), we L2, T, Wé(.Q))
Let the functions y;, 1 < j < j, belong to the space C*([0, T]) and satisfy the condi-
tion y;(T) = 0. Let us assume that

70, 1) = D 9, (0,0
j=1

From the equality (4.2) it follows that for m = k > j, we have
T

T T
(4.18) —f (Qhwk(t)”;?(t))dt_"f BO["l’k(ILh(l‘)]dt'}'f B, [wi (), n(1)]dt
0 0 0

T T
= (L(wile) +w<®, F(t)+F®), n(0))di+ f (KF(1), n(t))dt
0 0

T
+f (p(t)+AM;-, W(t))dt‘i‘ (Qhwlk! ?7(0))+BO[W1k: 7(0)].

By taking the limit of both sides of Eq. (4.18) and using the arguments similar to that
in [2] p. 62 we conclude that the functions w, F satisfy the conditions (3.6) and (3.7) of
the definition 1. A verification of the condition (3.8) is very similar to that in [2]. Thus
we see that the pair w, F is the generalized solution of the problem (1.1), (1.2), (1.12),
(1.13), g.e.d. .

(®) If X is the reflexive Banach space and X* its dual space, then f, — f weakly star in L*(0, T; X) if

T T
J @, e)di— [ (f), @0)dr, Yo eL'©, T; X*).
0 1]
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5. Uniqueness of the generalized solution

By imposing somewhat stronger requirments on the “data” we can prove that the
generalized solution of the problem (1.1), (1.2), (1.12), (1.13) is unique. To be more pre-
cise, let us suppose that in addition to Eqgs. (A.1)-(A.6) the following assumptions are
satisfied:

(A7) Q<R isofclass C3,
(A.8) FO e W3(Q)

(A9) ANy D,) € W;'(Q)} LREES
(A.10) EeC'\(D).

THEOREM 2. If the conditions (A.1)-(A.10) are satisfied, then there exists one and only
one generalized solution of the problem (1.1), (1.2), (1.12), (1.13).
Proof. Let {w, , Fl} and {W,, Fz} be two possible generalized solutions. If we set

A

W= w,—W,, F= F1 Fz, then from Eqgs. (3.6), (3.7) it follows that

T T
CRPI f (ohiv, fydt— [ Bolw, ildt+ [ B.[, yat
0 0 0

T ) T
= [ (LG, +w®, F), n)dt+ [ (L, Fy+F®), 7)ds
0 0

T
+f (Kf‘, ndt, VneV (see (3.6)),
0

T T
(52) f B,[F, yldt = % f (L(v =2, —2w®, ), p)dr
0 0
T

_f (KW, p)dt, YweL*(0,T; WiQ)),
0

(5.3) w(0) = 0.
A simple generalization of considerations of the paper [2] gives
feL=(0, T; w3'(@),

(5.9) » A
/=12 < Clw(®)]l2,, a.e.on [0, T],

where
f= L +w®, F)+ L(v, F,+F®)—KF, & > 0—a constant.

By using the procedure similar to that used in [2] we can prove that the following equality
holds true:

655 (b, B)+Balb(0), B+ B, (0), #(0)]) = [ (fi), (@))do
0

According to the inequality (5.4) we have

t

(5.6) [ (fto), w(0))do < & [ (IW(@)I13,2+ W(@)]13.2)do.
0 0
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The assumption (A.6) implies

GT) R@OIZ2+ IO 2+ W2
< &3 ((ehw (), Ww(t))+ Bo[w(t), w(t)]+ B [W(2), w(t)]).
The relations (5.5)-(5.7) give the estimate

(5.8)  [IW@)I13,2+ WO 2+ IWOIE,2 < & [ AREIIZ 2+ RO+ [W($)]13,2)ds.
0

Thus w = 0, F =0 and the theorem is proved.

6. Regularity of the generalized solution

Concerning the regularity of the generalized solution of the problem (1.1), (1.2), (1.12),
(1.13), we have the following result. Let us suppose that the conditions (A.1)-(A.10) are
satisfied and consider the following new asumptions.

(A.11) £ is the bounded domain of class C?,

(A.12) WO, FO e WHQ), w, e WiQ),

(A.13) peLl*(0,T; W3'(R), A(N:D)eL(), 2<r<w,
(A.14) Dk, e L,(2x10,TD, 181<1, i=1,2.

THEOREM 3. If the conditions (A.1)-(A.14) are satisfied, then there exists one and only
one generalized solution of the problem (1.1), (1.2), (1.12), (1.13) with the property

we L (0, T; Wi(QnW3iQ),

Wwe L (0, T; W3(Q)),

e L2 (0, T; Wi(9Q),

FeL®(0, T; W%(Q)mW,?(Q)), 2<r<ow.

(6.1)

Proof
1. Approximate solutions

Let us suppose that the set {¢;};_,.,, Is a basis in the space W2(Q) A W3(Q). As
in the proof of Theorem 1 we may construct the Faedo-Galerkin approximations
W, F,, satisfying the a priori estimates (4.16).

II. A priori estimates

We shall show that due to the assumptions (A.1)-(A.13), the following estimates
hold:

[Wm(®)l]1.2 < €,

6.2
- . AWa@ll2.2 < ¢,
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where ¢ is a positive constant.
By putting in Eq. (4.2) ¢t = 0, multiplying the j-th equation of Egs. (4.2) by g;,(0)
and taking the sum wiht respect to j, we obtain

63)  (ehitnl0), #n(0))+ Boli#(0), i6(O)] + By [ (0), ()]
= [LOWm(O)+ W, Fp0)+F @), #(0) + (K (0), #(0))
+(pO)+AM ., ,(0)).
It follows that (c;,i = 1, 2, ... — the positive constants)
6.4)  l[Wa0)]12,2 < (| [Wn(0)]l3,2 + [[Wn(0) + W[5 5||Fn(0) + Fll,
+ [|[FnO)]]1,2 + [ pO) + AMy || - 1, )| [Wm(O)]]1,2
and due to the assumptions of Theorem 3,
(6.5) W, O)ll;.> < €.
Let us now differentiate Eq. (4.2) with respect to 1. We obtain
(6.6)  (ehiw(1), @)+ Bo[Wi(t), ¢+ B1 [W(1), ¢]
= L(Wn(t)+w®, Fu(t)+ F©) " ) +((KFu(0)) ', 5) + (2(1), ¢,)-
By multiplying the j~th equation of Eq. (6.6) by g;.(1), taking the sum over j, l € j < m
and integrating over [0, ] we arrive at the relation
©7) 5 ((ehi#n(®), #n(0))+ Boli(2), ()] + B [n(1), Won()])
= & (79 (0), 35 (0)) + Bo[i#n(0), (O] + By [ (0), 0 (0)])

- [ (L(n(5), Ful) + F®), i5(s)) ds + [ ((KEn(S))" s $5n(s)) dis
0 0

t t

[ (L#m(S) + W, Fn(5)), $on(s)) ds+ [ (D(S), Wm(5))ds.
0

0
The assumptions (A.6) imply the inequality
(6.8)  ca(18m(II3.2+ [10m(@)I[F.2+ [Wm(DI]3,2)
g (Qhwm(t)y wm(r))_i'BO [i“)m(t); wm(t)]'*_BL[‘:vm(t): Wm(t)]
By using the Sobolev Imbedding Theorem we can deduce the estimates (1 < p < 2)

69 L(vn(S), Ful) + F@), #00(s)) < Tsllitm(@)l]2.2 ( D, max|D* (Fuls)+F )|

=1

‘ X W12 < 6 (1FP3,p+ | Fn(S)]3,0) W 2,21 ()] 1,25
(610) (L(w,,,(s)+w(°), Fm(s))s wm(s))g E'/('h"”rn('g)lli’.,z'i' “W(O)”z,z)”Fm(s)‘|3.p”wm(s)"].,z'

Due to Agmon’s Regularity Theorem for Dirichlet’s boundary-value problem (see [8])
and due to the estimates (4.16) we have
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6.11)  [IFa(®lls., < Ea(;IIW...(S)+ZW‘°’H2,2|!W'm(S)Hz,z

+ [ KW ()] -1, + 114 (NTDZ)H—LP) < const,

(6.12) ”Fm(s)]\a,p < Gy (||Wm(5)+ W |3 2| (S ]2, 2+ ] (me(s)).”—L.u

< Cro+Cip|WnlS)l]2,2-
As in Egs. (4.11)-(4.13) we deduce also

(6.13) ((KF".(S))': ‘.“‘"m(s)) < 5,_2+513(HW,,,(S)H§,2+|[ff’,,,(s)H%_2),
(6.14) (P(S), wm(s)) < Crat0ys|[Wn(8)]13,2-

By using the inequalities (6.9)-(6.14), it is not hard to prove that the right-hand side of
Eq. (6.7) is no greater than

Cr6+17 | (Im) 13,2+ m(1Z,2 + | n(5)]13. ) s
0

and, consequently, the following relation holds:
6.15)  [[Wn(@)[3,2 +1[Wm(OIF, 2+ [Wm(D)]13.2

t
£ Ty 4 of (#1132 + [8n()I 3,2+ 1Dm(5)] 3,2 )ds.
Due to Gronwall’s Lemma we have the inequalities (6.2).
1II. Passage to the limit
Arguing as in the proof of Theorem 1 we can select subsequences w,, F, such that

% ——Ww weakly star in L*(0, T; I/ID/Q(Q)),

Y yo

W ——w  weakly star in  L®(0, T; W3(Q)),

6_ ¥ ys00 .
(6.16) T W weakly star in  L®(0, T; W3(2)),
F,——F weakly star in L*(0, T} W%(Q)).

Similarly as in the proof of Theorem 1 we can show that the functions w, F form a general-
ized solution of our problem. Let us write Eq. (1.1) in the form

6.17)  M3p,w+udp w = Lw+w®, F+FO) 4+ KF+p+AMp—ohiv+Ap i = h.
Due to Eq. (6.16) we have
(6.18) , he L= (0, T; Wz'().
The regularity theory for generalized solutions of the Dirichlet problem (see [7] for
example) implies
' weL? (0, T; Wi(QnW3iQ)).
We have also f
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—%L(w+2w(°’, w)—Kw—A(NyD,) € L*(0, T; L(2)), r > 2.

By applying the Regularity Theorem of [8] to Eq. (1.2) we obtain
FeL=(0, T) WA Q)nW3(Q)).
The proof is complete.

From Theorem 3 it follows that the functions w, F satisfy the boundary conditions
(1.12) in the classical sense. This is due to the inclusion W3(2) = C*(2) and the Lemma
9.1 of [7). Secondly, the relations (6.1) enable us to conclude that in the shell under
consideration there exists a classical stress tensor with the components of class C'(£).
In fact, the assertion follows from the inclusion W3 (2) = C3(2), r > 2 and the relations

: hj2 5 h2 ; h2
o*F a*F a*F

i _f"”d"ﬁ’ Bl f T G, ‘_f T12dts.
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