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Method of fundamental solutions
A novel theory of lifting surface in a subsonic flow

L. DRAGOS (BUCHAREST)

IN THIS PAPER the method offunda mental solutions known from [4] in the case of the three-dimen-
sional motion of fluids in the presence of bodies is developed by replacing the bodies surfaces by
continuous distributions of momentum sources. To this purpose the perturbation of the uni-
form motion of a fluid caused by the presence of a stationary point momentum (the steady
fundamental solution) is determined. Using the method of superposition, the perturbation of
the uniform motion of a fluid in the presence of a three-dimensional body which is assimilable
with the domain of intersection of this body by the plane xOy (the lifting surface theory) is
obtained. This perturbation is given by the formula (3.2). From the boundary conditions fol-
lows the integral equation of the lifting surface in the form (4.6) or (4.9). As a particular case
the solution of the plane problem as well as the Prandtl’s representation and his integro-differ-
ential equation from the lifting line theory are found.

W pracy rozwinigto metodg rozwiazan podstawowych znang z [4] dla przypadku trojwymiaro-
wego ruchu plynow w obecnosci cial droga zastapienia powierzchni tych ciat przez ciagle roz-
ktady zrodet pedu. Okre$lono w tym celu perturbacje rOwnomiernego ruchu plynu wywotana
obecnoscig stacjonarnego pedu punktowego (ustalone rozwiazanie podstawowe). Poslugujac
sie metoda superpozycji otrzymano perturbacje rownomiernego ruchu plynu w obecnosci
ciala trojwymiarowego zgodnie z obszarem przecigcia tego ciala plaszczyzna xOy (teoria po-
wierzchni nosénej). Perturbacj¢ t¢ podaje wzor (3.2). Z warunkow brzegowych wynika rOwnanie
catkowe dla powierzchni nosnych w postaci (4.6) lub (4.9). Jako przypadek szczegolny roz-
patrzono rozwiazanie zagadnienia plaskiego, jak rowniez reprezentacj¢ Pandtla i jego réwnanie
rézniczkowo-catkowe z teorii linii nosnych.

B pabote paaBepHYT MeTod (dYHIAMEHTANBHBLIX pENIEHMIl, M3BeCTHBIH u3 [4], nna cioyuas
TPEXMEPHOTO MOBIDKEHHS YKUAKOCTEH B MPHUCYTCTBHM TEJI ITYTEM 3aMEHBI ITOBEPXHOCTH 3THX
TeJ1 HeNMpEepPbIBHBIMK DACIpPEIe/ICHHAMH HCTOYHHKOB mMmyJsibca. C 3Toit Iiesbio ompegelie-
Ha NepTypOalysa paBHOMEPHOIO JBHMXKEHHA »KUAKOCTH, BHI3BAHHAA INPHCYTCTBHEM CTALIAOHA-
PHOT'O TOYEYHOro MMITyJIbca (ycTaHOBHBIUeecs (yHOameHTalbHOe pelueHue). ITocny)kuBasich
METOOM CYIIeDIO3HLIMH, [TOJIy4YeHa NepTypOauus paBHOMEPHOIO OBIDKEHHS YKHIKOCTH B IIPH-
CYTCTBHH TPEXMEPHOIO TeJIa COrJIacHO ¢ 00IacThIO IepeceyueHHsI STOro Teja IUIOCKOCTEo xOy
(TeopHus Hecylllell MOBEPXHOCTH). DTy nepTypbamuio maer dopmyna (3.2). VI3 rpanuunbx
YCJIOBHI CIIeIyeT MHTErpaJbHOE YpaBHEHNE NS HECYIIEH MOBEpXHOCTH B Buae (4.6) mmm (4.9).
Kak uacTHbIf Cllyyail pacCMOTDEHO DpellleHHe IUIOCKOM 3a/lauM, KaK TOMKe IMpE/ICTABIIEHUE
IIpaunTna m ero guddepeHUIHaNTEHO-UHTErpaNkHOe YpaBHEHHE M3 TEOPHUH HECYIUMX JIMHMH.

1. Introduction

THE CcLASSICAL METHOD of replacing the presence of a body in an incompressible fluid
by a continuous distribution of sources or vortices situated on the body surface is now
well-known. The solution of the equations of motion has then the form of an integral
on the body surface (continuous superposition) with a priori unknown density of this
kind of sources of vortices. The boundary conditions lead to an integral equation for the
determination of the density. From the mathematical point of view this method is rig-
orous. It consists in representing the solution of the Laplace equation by potentials of
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a simple and double layer (in the case of the incompressible fluid the continuity equation
in the hypothesis of irrotational flow leads to the Laplace equation). Nevertheless from
the point of view of mechanics it has no justification since the body is not a distribution
of mass or vortex sources. It is true that the experiments show that some vortices are
separating from a body moving in a fluid, but the appearance of these vortices is an effect
due to the presence of the body. In fact, the body transmits some momentum to the fluid
and this leads to the formation of these vortices. Therefore it seems natural to replace the
presence of the body by a continuous distribution of momentum sources. On the other
hand, this idea stems from the Cauchy principle {15] by virtue of which we admit that
there exists a continuous distribution of forces of the body surface of a priori unknown
density which replaces the action of this body upon the fluid. This distribution must be
introduced in the equations of motion of the fluid. Another fact which pleads against
the idea of assimilation of a body by a distribution of mass or vortex sources is: in order
to obtain a solution satisfactory from the point of view of mechanics, we have to take also
into account the layer of free vortices behind the body (see for instance the Prandtl theory
of the lifting line). This idea is still artificial since the vortices behind the body are a con-
sequence of the body. From the mathematical point of view the representation of the sol-
ution as continuous distributions of sources or vortices on the body is too poor to be
able to take into account all the necessary boundary condition.

In [3] we suggested the replacement of the body surface by a continuous distribution
of momentum. We applied this idea in [4] to the case of the plane steady motion of a com-
pressible fluid using the linearized equations; the theory of thin airfoils is given as illustra-
tion. In the present paper we -apply this method to the three-dimensional problem of
compressible (or incompressible) fluids in subsonic flow (the supersonic case will be treated
elsewhere) and, as an example, the theory of the lifting surface is considered. In this
way we regain as naturally and simply as possible the more particular representations of
the incompressible flow obtained in the hypothesis that the body is replaced by distribu-
tions of connected and free vortices [16, 17, 2] as well as the general representation
of the compressible motion given by HOMENTCOVSCHI in [8] by means of distributional
equations. We regain also the integral equations given by the quoted authors. The sol-
ution given here is valid for compressible fluids in the frame of the linearized theory
and for thick airfoils.

2. Stationary fundamental solution

The perturbation go ¥ ¢p, V,v produced by a point momentum source of intensity fo,
which acts stationary at the origin of the system of coordinates, in a uniform motion
whose velocity is ¥, along the Ox-axis, of a compressible fluid which obeys the law of
perfect gas, is determined, in the linear approximation by the following system [3]:

M?ép|éx+divy = 0,
2.1 ov/ox+gradp = fi(x),
lim (p,v) =0,

X—>—00
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where g, is the density of the unperturbed motion, M = V,/co (cd = ypoloo) is the
Mach number (¢, stands for the velocity of the sound) of the unperturbed motion and f
differs from f, by a scalar factor which has no importance for the subsequent consider-
ations. The solution of the system (2.1) has been determined in [5]. In the subsonic case
(M < 1) we obtain

1 b d o\ 1
p= _ﬁ(fl g‘f”fzg"rfag)ﬁ,
v =f1H(x)6(y, Z)_ps

A= ol foo [ o ? dx
o2 [ ‘R 0z j

L2
7 oy

r‘7)2 —fZH(t)a(Ys )+ E+an2 ) 4n ay
i\ _f, & [de f @ fAdxi
v =i HE) (0, D+ - - 7+ 4 el + o | R
where
@2 R=yx+p07+2), 2 =1-M

or. after some elementary calculations,

Lol 2y x) ,f-z,i_i__( 1)
=fH(x)0(y, 2)+ - A aV R 47_;@ }’2+22- ‘1+—R' 47 3y yitz? 1+R ,

(2.3)

,,xaul_f,,z,a y ( x\_fi 8z ( i)
=L@ A+ % 0z R 4m oz y*+z? 1+R 4n 0z y +z° I+

This is the form of the solution given in [5]. From its form it can be seen that the per-
turbation is irrotational except for the Ox-axis downstream the perturbation source
(x > 0). This result explains the presence of the vortices downstream the body which
is the momentum source if we determine the perturbation of the fluid as discontinuous
superposition of perturbations of the form (2.3). Nevertheless in the following we shall
not use the form of the solution which follows from Eq. (2.3).

Since
' ‘oﬁ_l(ﬁzaﬂlagmg): o
it follows
e
and therefore
4;—; a -2 fdx = “1“ I('Bz‘;xz_z—i_&%é)%-_ J o(x)dx
= f; alere 4:'5 ay f(’f{'H(x)a(y’z)'
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Substituting this into Eq. (2.2) and taking into account

0 dx__LH.i
oy - R~ y24z2 R/)’

it follows

_Si o 1 AP s 9) ¥
@4 vy =3 g 4Jz(f282 faay)y2+22(l+

and, similarly,

hH ¢ 1

z
2.5 wv,(x,y,2)= %$§+4;(fzg—fsgy—)m(

This is the form which shall be used in the following.

X

R

X

R

-
%

B, 01
f3axR

o 1
fz&x R

Obviously the fundamental solution is important not only for the theory presented in

this paper but also for some other problems.

3. Theory of lifting surface. Representation of the solution

Let us now determine the perturbation produced in a subsonic uniform motion of
velocity ¥, along the Ox-axis, of a compressible fluid, by the presence of a three-dimen-
sional body whose projection on the xOy plane forms the domain D (Fig. 1). We de-

note by
3.1 z=h,(x,y), (x,y)eD
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the equations of the upper and lower edge of this airfoil, the functions 4, (x, y) are de-
fined on D and they are smooth and uniformly bounded by a small number such that we
may assume that the perturbation produced by the airfoil in the fluid satisfies the linear-
ized equations of motion. By virtue of the discussion in the introduction we shall replace
the presence of this body by continuous distributions of momentum sources of unknown
intensity f. For the sake of simplicity we define this distribution on D and neglect the
component f, along the span since this component is not essential (i.e. it does not influence
the lifting). Taking into account Egs. (2.2);, (2.4) and (2.5), in the exterior of D, we ob-
tain the following solution:

pend =~ [ [se 0 (; )dfdn——fff(e,m (+]esan
62 vin v =g | [[sm () e n 2 oo n)2+z(1+x:6)]d§dn,
D

o, 9 = g [ [ate ) () dean
D

x—§&
-fff(é )ay - 1))2+z (1+ r )] didy
g (1
_EU e g ) e
where, throughout the paper, we denote

r=y -2+ -+, ro =V E-+0-n?
n=V3+BR-n*+p2 f=f, &=
The representation (3.2) reduces to that known in the literature for the incompressible
fluid in the presence of the airfoil without thickness [2, 16, 17], if we take § = land g = 0 ~
and to that given by Homentcovschi [8] for the general case of the compressible fluid in

the presence of the airfoil with thickness.
Applying the Green formula we obtain

fo fe, ﬂ)%[(y_yn;ﬁ*-zz(l“l-x:g)] dédn
fffan [(y n)“rz (1+ "rf)] i
g K e LR ( _

¥k Je= ¢
ff(s e n)z+zz(l+ )d“ffan G +7 )dgdn

and from the identity

d rl d
fa(r)w(

3.3)

) dédn

£
>
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it follows that

N IR A= P 2=t

therefore v; may be written in the form

y—n X—~&
N ffga ( )d§d¢7+4 ff(y 77)2+Zz(1+ . )dg
5—E B Iy
ffan (y— 77)2+22(1+ r )dEdn+4j;‘f7 x—§d5

e

This form of v, will lead us to the integral equation given by HOMENTCOVSCHI in [8]. We
preferred the transformations prior to the passage to the limit because in the limit the
_rals become singular.

4. Integral equation of the lifting surface

Let us now impose the boundary conditions

4.0 v3(x,y, £0) = hi(x,»), (x,») €D,

where &' = dh/éx, which follows from the slip condition of the fluid on the surface of the
airfoil. Therefore it is necessary to calculate p(x, y, +0), vs(x, y, +0) for (x,y) e D.
The first term from the expression of the pzrturbation p is the tangential derivative of
a single layer potential, hence it is a continuous function. The second term is the normal
derivative of the same potential; it then follows:

@2 e, 20 = = o [ 86 1 (o) dsant 5 v
D 0

whence we obtain the signiﬁcahce of the density f(x, »)

4.3) S, 0) = plx, y, +0)—p(x,y, —0)
which is of fundamental importance for the calculation of the lifting.

In the expression of v, given by Eq. (3.2) we shall use the following formula proved
in the Appendix:

x=§
(4.4) 2111:0 fjf(g )ay [(y WH (1+ ; )]d&dn

- PFff (f(ét:ﬁ))z(u)dfdwﬂsz f(«fw)%(%) d&dn,
D D

where PF is the symbol for the “Finite Part” in the Hadamard sense. By passing to the
limit it follows that '

@9 o 0 = Fyga 04 PF L0147 ey
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Introduci-ng this into Eq. (4.1), adding and subtracting the two obtained equations, we
find for (x,y)e D

(4.6) -Z-I;EPFID (f;(f_ ’7))2(1+ - )dsdn = H(x, y),
(4.7) g(x,y) = h_(x, )= h,y (x, ),

where

(4.6), H(x,y) = hi(x, ) +hl(x, ).

Equation (4.6) is the equation of the lifting surface from which f has to be determined.
Under various forms for the incompressible fluid and for the airfoil without thickness
it can be found in [17, 2, 1] and may be in the works of some other authors. For fluids,
with chemical reactions it has a more general form given in [11]. Obviously, for airfoils
without thickness we have in addition g = 0.

Passing to the limit in Eq. (3.4) and taking into account Egs. (A.3) and (A.6) it follows
for (x,»)eD

48 osxy, 10 = Fyeln Dty s (1+x_5)d5
y=n o

ff ( )dédn LB f I yo
ro | y—nm 4n ro x—¢

f f of y— n dédn
on x—
where we denote [8]

4.8), [[ ke, y, & pdedn=tim [ [ k(x, y, & n)dédn,

D— 0" p_p&

D% being a strip parallel to Ox, centered in (x, y) and having the thickness 2¢. Introducing
Eq. (4.8) into Eq. (4.1) and proceeding as in the above, the Homentcovschi equation [8]
follows:

6 frtn i [ 2

x=& (- n) an y—=n
rod&dn
= H(x,y), x,y)€D.
ffan(x Hy—m ~ AN )
This derivation avoids the calculation with singular integrals.
The form of the domain D imposes restrictions on the unknown f(x, y). We shall
denote by x = x_() the equation of the leading edge and by x = x,(y) the equation of
the trailing edge in the xOy plane (Fig. 1). Obviously x_(y) and x, (y) are assigned func-

tions. If the leading edge and the trailing edge are meeting at the points (0,—b) and
(0, +b), then

(4.10) x_(+b) = x,(+b).

3 Arch. Mech. Stos. 5-6/83
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If at the ends y = +b the domain D is bounded by segments parallel to Ox, as it is for
instance in the case of the rectangular wing, then we shall put the condition

4.11) Jix, £b) =0, x_<x<x,

which, as it follows from Eq. (4.3), expresses the condition of continuity of the pressurc
at the side edges y = +b (condition of the Kutta-Jucovschi type).
In the following we shall use the identity
1 x—& ﬁ x—&+rg
s\t =M B v—m)
=) mx-=H-n
too. It may be easily checked.

4.12)

ro

5. Wing of infinite span (Plane problem)

In order to obtain the theory of the wing of infinite span (the plane solution), we
have to assume that in any plane parallel to xOz the airfoil has the same form, that is to
suppose that Eqs. (3.1) are of the form z = A,(x) and D is a rectangular domain
(—a< x < a, —b <y < b) for which b —» co. This implies to put g = g(&) and f = f(£)
in Eq. (3.2). By denoting s* = (x—£)2+p%z%, we have

y—n =t 2(x—$§)

= — 1 ——
bl-f?p {a ( ) "7 (x )bl_,rgsz ]/.5'2+ﬂ2(}’ 17)2 G 52[3 L)

then, from Eq. (3.2) the representation given in [4] follows:

_ 1 (x §)g(d) +p%2/(&)
p(x,2) = ZE J (x—&)2 1 22 dt,

(.1) .
B[ x—8)fE)—zg)

v3(x, 2) = e (=) 1 f22 dé.

In the integral equation (4.6) we shall use Eq. (4.12) and we shall remark that .

n=>b 2ﬂ

lim —~— £+ L
n_-b x'—é

b (X—E)(y—mn)

The known integral equation then follows:

(5.2) g 'fg—(f)£d5 =K, ()+h (%), |x| <a.

6. Theory of lifting line

In the theory of the lifting line (PRANDTL’S theory [14]) the unknown function is the
circulation C(y) on the curve which delimitates the airfoil in the section of the body with
the plane y = const and the thickness of the airfoil is neglected (g = 0). This last condi-
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tion implies v, = —p, as it follows from Eq. (2.2),. In the approximation of the linear
theory it follows that
x_(») Xy
c) =§v-dx= [ ox, y, —Odx+ [ v,(x,, +0)dx
x.(») X_

Xy

= [ llouldx = — [ [pldx = — [ fx, ydx.

X

Therefore
) Ev(m)
(6.1) ey = — [ f&, me.
£-(n)

From Egs. (4.10) or (4.11) it follows
(6.2) ‘ C(+b) =0.

In the Prandtl’s theory the airfoil in the plane xOy, therefore the domain D, is assimilated
with the segment (—b, +b). This is the hypothesis of the lifting line. In order to see what
happens to the integrals from Eq. (3.2) as [§_(n), 7] = [0, n] « [£+(n), n], we shall apply
the formula of the average. For a continuous function k we have

b

£y
lim [ [ A&, kCx, y, 2, & pydédy = lim [ dn [ & Dk(x, p, 2, & nde
D -b &
b ’ b

= lim ] k(x,y,z, &, n)Clp)dn = fk(x,y,z,ﬂ,n)C(n)dn.

-b —b

where &* e (&_, £,). Applying this reasoning and taking into account Eq. (6.2), it follows
that

b
_ P J z
Uy = —p = 4n C(n) P dn,

X
= 4 dy J. ()(y 17)2+z (I+Th)dn
(6.3) >
1 dac z X
- f 5 6= n)2+z(1+ ) - ~ ) '%(y—n)2+z2(‘+r_1)d"’

v = - 491: 2y f oG n)2+z (H )dr_ﬁ_c(n) i .dr
b b
1 [dc y—yq x p* =
. N _——2(1+—)d —E_{ C(n)r*? dn.

dv J dn (y—m)?+z ry

For # = 1 the famous Prandtl’s representation [12] is obtained.
In order to see what becomes of Eq. (4.6), we shall make use of a reasoning which
exists in essence in the papers of WEISINGER [17] and HoMENTCOVscHI [9, 10, 11]. On the

3t
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basis of the identity (4.12) and assuming that PF commutes with the differentiation (for
the simple integral this is proved in [13]), it follows that

prDf e (1455 e =——fff(s W i T

-7 x=50-mn
_i’”@ @ _ro
oy _J y—n "oy fD{ TeDanio=m “4

1 0 -
= PF fan) (y . n—gj;[ﬁf(é, =D dedy 1 0(eme)

faea A=) ,
4 dy y—y zﬁfif(f’”) e dédn+0(e*In¢)

b
o, S f f (5 y) dE+0(e2In &)
B x(»
the significance of the term O(e%lne) being rigorously shown by HoMENTCOVSCHI in [9].
Up to this term, the integral equation (4.6) reduces to

B’ f(f ») I € dCi dn
T

(6.4) dé = — —H(x,y) = L(x, y).

x—£& v g dny y—

Considering the right-hand side of (6.4) as known, in (6.4) we have the equation of the
thin profiles from the plane flow. Imposing at the trailing edge Kutta-Jucovschi condi-
tion (i.e. f must be bounded for x = x,) it follows

69 wen- -y I5E [ YRR

1 /x,—x ’I" dc dn 1 x+—x f t—x_ H(t,y) , .
o) / e +,>_ dt.
2 - x—x_ L/ dn y— 77 b4 Xp—t I—x

Integrating the equation on the interval (x_, x.) and taking into account the relation

(6.6) | f ]/

we obtain the Prandtl’s equation [12]

Y dx = —(x+—x ),

- b
(67) BC0) = ) | +amaio,
—-b

where 4a(y) = x,.(y)—x_(») and

~47a(3)j0) = f
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Appendix
Using the notation
§+(n) ¢
(AD Koz = [ sEn (1 e,
&.(m)

where, as in Eq. (6.1), £ = &_(x) is the equation of the leading edge in D and & = &, ()
is the equation of the trailing edge, from Egs. (4.10) or (4.11) it follows:

(A.2) K(x,y,z, £b) = 0.
We have also
(A3) Fx, y,z)hfff(f D ( x”f)dsdn

b
(—nK(x, y,z, )
-2 +z2 O

-b

As in [2] we shall introduce in addition the function

+b
w | EEEREN)
(A4) Gl = f ot
such that we have
+b
(A5  G+iF = [z+i(y—nIK(x, ¥, 2, n) _1 J K(x y,g’ 1) i
‘ St (y—n—iz)

where £ = y+iz. Equation (A.5) is an integral of the Cauchy type for which we may
use the Plemelj formulae of passage to the limit for z— 0[( — y € (—b, +b)]. Also, the
density K depends on the variable z which tends to the limit, but as it is shown in [7] p. 77,
the Plemelj formulae are valid in this case, too. Applying these formulae and separating
the imaginary part, it follows that

. _
" K(x,,0,n) 5 f(E,n)( XLE)

A.6 F(x,y, +0) = — " dn = 22 1+ 5= )dEd

(A.6) (x,y, £0) J o U] JD - " 1

the integral in D_ being defined in Eq. (4.8),. It exists because the principal value in the
Cauchy sense, from which it is derived, exists.
Let us now differentiate the integral (A.5) with respect to y. It follows that

+b
6 . F_l J‘ﬁlj dy 1 [ K(x,y,2,7)

oy ayn=C i 4" =0

The first integral is of the Cauchy type, the second is of the type of those studied by Fox
[6]. Using the formulae of passage to the limit for this kind of integrals we obtain
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oG . OF f
— i +:7z—-—x » 0, +— , 0, ) ——
(By ay)z—:to (x,7,0,5) oy *, 77)7) =y
ye(—b, +b)
b
_ ax) 1 K(x,y,0,n)
—— PF — 5 — dn,
o (3n I e R

Ny

b b
aF) f 3K dn f K(x,y,0,7)
. = | =-—(x,y,0,n)——4+PF | —222 0 4
(ay z=10 By( 4 ﬂ)y*n y—n?
ye(=b,+b) b -b

This result is proved' by the formula (4.4).

whence
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