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Two existence theorems for a rigid heat conductor

L. SIDZ (WARSZAWA)

THeory of Géarding operators is used to get existence theorems for boundary-value problems
of a rigid heat conductor in a weak form.

Zastosowano teori¢ operatorow Gérdinga do wyprowadzenia w stabej postaci twierdzen o ist-
nieniu dla zagadnien brzegowych dotyczacych sztywnego przewodnika ciepta.

IIpuMeneHa teopusi omepatopoB I'apjuHra ajisi BeIBOAa B cIa0oM BHJIE TeOpeM CYLIECTBO-

BaHHA OJIAd KpaeBbIX 3a[ay, KacarllHUXCs 3KECTKOI'0 TEIUIONPOBOOHHKA. 3

WE APPLY two theorems given by ODeN [3] to a stationary equation of a rigid heat con-
ductor in a weak form.

Generally 2 is a bounded domain in R® with smooth boundary 02, and U, V are
reflexive separable Banach spaces such that the injection i: U — V is dense, continuous
and compact. By u, - u we denote weak convergence u, to u and by U’ topological dual
of U. {+,+> is duality pairing on U’'x U.

We consider the problem:

For a given fe U’ find 0 € U that for any v € U

®  Jo(x, 000, v000)- verrax+ [ o(x, 000)s(0ax = - [ fooecnar.

Here 0 denotes the temperature, f is a density of heat sources, Q represents a vector field
of flux of heat, ¢ is a scalar field of density of heat sources depending on the temperature.
We assume that we know how Q and ¢ depend on X, 6 and V6. The equation (E) was ob-
tained from the local form of the heat equation

DIVQ (X, 6(X), VO(X)) = q(X, 6(X))+£(X),

(see, e.g. MARSDEN-HUGHEs [4]).

We recall the following definitions from [3]:

DEFINITION 1. A:U — U’ is a Gdrding operator if A can be expressed in the form A(u) =
= A(u, u), where A:UxU — U’ satisfies:

1. Voe U the map Us u - A(u,v) € U’ is a radially continuous(*) operator from U
into U'.

2. There exists a continuous function H:R* x R* — R*, R* = [0, + ), with the
property
lim ltH(x, ty)=0 for any x,yeR?

=0+

(") A is radially continuous if the function R3 7 — {A(u+fv), v) is continuous for all u, v e U.
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such that for every u and v in the ball B,,(0) = {w € U:||w||ly < m} the following inequality
holds:

(A, W —A@, u),u—v) > —H(m, |lu—2l|y).
3. If u, » u weakly in U, then for any v, we U

liminf (4w, u)— A, 1), u,—ud = 0,

n—+ o

liminf{A(v, uy)— A(v, u), w» = 0.

n— 400
DEFINITION 2. A:U — U’ is a variational Gdrding operator if A can be expressed in
the form A(u) = A(u, u) where A: Ux U — U’ satisfies:
1. The condition 1. from Def. 1 holds.
2. The condition 2. from Def. 1. holds.
3. YueU the map Us v — A(u,v) € U’ is a bounded operator.
4. If u, - u weakly in U and lim {A(u,, tup)— A(u, u,), u,—ud> = 0, then for any

n—o

velU
A, u,) = A(w,u) weakly in U'.

5. If uy — u weakly in U and for any v € UA(v, u,) converges weakly to some element
feU’, then

lim (Ao, up), upy = {f, ).
We recall the two theorems which were given by ODEN [3].

THEOREM 1. A coercitive (%) bounded Gérding operator is surjective.

THEOREM 2. A coercitive bounded variational Gdrding operator is surjective.

These two theorems will be used to prove the existence of a solution to two problems
of the equation (E).

We shall denote by C a positive constant which is not necessarily the same at each
occurrence. For a positive integer p we denote by p’ such a number that 1/p4+1/p’ = 1.
We shall supress the dependence on X in notations.

We denote by || ||w,m, p the norm in Wg"?(£2) and by || ||, the norm in L7(£).

APPLICATION 1. Let p > 2, fe (W*P(2))’. We consider a stationary equation

AO) = f,

where
A: Wi (@) > (WP (@), A(D) = DIV Q(X, 0(X), VO(X)),
with the boundary condition

00 = 04(0,09 — trace of 6), 6, EWI_%J(&Q)-

An), u
(?) A is a coercitive operator if lim w =00
llullg=+o o
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There exists 0 € WP(2) such that 0], = 0, (see e.g. [5, s. VII], [6s. VI]). If a solution &

exists, then 6—0 € Wi'P(2), so we can formulate our problem in the following4 form:
For a given f€ (W"?(£))’ find 6 € W5'?(£2) such that for any v € Wg'?(£2)

(1.1 CAO+0),v> = {f,v).
We show that if Q is suitably restricted, there exists at least one solution of the problem
(1.1). We assume

I. Q(X,6,V0) = Q0(V0, X)+0,(V6, 0, X), where Qo(w, X) is Gateaux differentiable
in we R3? and continuous in X € 2 and Q,(w, d, X) is Gateaux differentiable in w € R*®
and d € R and continuous in X € £2.

II. For any u, v € W'?(£2) such that u—0, v—0 € WiP(Q) the following inequalities
hold

1
d0o(Vu+1Vo, X)

a. % dt Vo 2 a,|Vo|? for Xef,
b. [Qo(w, X)| < b (w]P~1+1) for weR} Xef.
III. For any we R3,0 e W1P(0), X e
a. [Q,(w, 0, X)| < a,(1 +019+|w]9),
b. L% W, e,x>l < by(1+ 1011 4 wlt),

|
c. Vae R?, Ql w,0,X)-a-a<0.03

In these conditions a,, b,, a,, b, are positive constants and 0 < g < p—1.

THEOREM 1.1. Suppose the assumptions 1, 11, 111 are fulfilled. Then there exists at Ieasr
one solution of the problem (1.1).

Proof Weshall show that 4,(v) = A(0+9) is a bounded coercitive Garding oper-
ator from W§'?(R) into (W7 (22))'. We have W5'? = LP(£2) and the imbedding is dense
continuous and compact, so the assumptions about spaces U, V, are fulfilled.

Step 1. 4; is bounded.
For u, v € W§'P(22) we have
CA@+1), vy = [ Qo(VO+Vu, X) VodX+ [ 0,(VO+U, G+u,X)- VodX.
2 2
From the Hélder’s inequality and the assumption IIb we have

| [ Qo(VE+Vu, X) - Vodx| < 11Qo(VE+Vu, X)li, [IVell, <
2

Nl ge < CUB+ulZES+Ololl, 10 < CUIEES+ Ollelly g0 -

O ie. Z BQ” w,0,X) aa;<O0.

i,j=1
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By similar calculations we get
| [ Qu(¥6+Vu, 04u, X)- VodX| < C(|I0+ule],, +[[[VE+Vuld|,,+C) - Vol
2
Since g < p—1, then p’+ g < p and we have

| [ 0:(VO+Vu, 6+u, X) - Vodx| < CUB+ullyss+ O)llol, 5.0
o

< Clull 30 +C) o]

whr.
Taking together these two estimates we have

1B+l 5. sup _ KAD+1), 03] < C(Iulf s+l + ©)

@Y = _
whe=

llv]

so A is bounded.

Step 2. 4 is a Garding operator.

Let A(u,v) = A(u)+0- . Then A(u, u) = A(4) and the conditions 1 and 3 in Def. 1
hold because of the assumption I. We must prove the condition 2. For u, v € WJ'?()
we have

CAO+u, 0+u)—AO+v, 0+u), u—v) = J,(0+u, 0+9)+J (0+u, 0+9),

where J, and J, correspond to Q, and Q,, respectively. Let us denote z = u—v € WP (Q).
Using the assumption IIa we get

Jo@+u, 04+0) = [ [Qo(VO+Vo+V2)—Qy(VH+Vo)] - VzdX

Q

> a, [ ValPdX > Cllellyy.

Q

and similarly using the assumption ITlc we obtain (w = 0+v+ rz)

Ji(0+u, 6+2) = f[Ql(V(§+Vu, 0+u, X)—Q,(V0+Vo, 0+0, X)]VzdX

2
1
= f Jﬂ aQL(Mi)_ -Vz-Vz+ EM o Vz] dtdX
g a(Vw) ow

1
gff—ﬂ—;vﬂ’—){z-Vzdth.
0

Q2

Therefore by the assumption IIIb

Ji(0+u, 0+0) < Qfﬂ

90,
o (Vw,w,X) - z-Vz

1
dthsfsz(1+rw|‘-*"+Jle"“)
o 0

x |z||Vz|dtdX.
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We shall estimate all parts of this sum. Let s denote & = |[Vw|?~! and

1
= [ [ Ivwletiz] V2l drdx.

o 0

Since for any ¢ > 0 and any function g

P 1
dxX < 12|12 4. - — + ——— ||g]|2:
gfIVZI!gI 1211330 - + e llgllp
we get, taking g = hz,

1

1
ef ; 1
I< —|2||? 1 pdt+ | ||hz]|5: - ——dt.
Wo P
0 ? 0 pe

We have also

P(a—1
) |lhz| 5P~ < [lz|IBl1AllS /-2 and  [AIIBEZS = IIVWH_TEE;'?-

Because pf;]_—_zl) < p, then ||lel%i < C||Vw||, and therefore for u, v € B,(0) in

We*(2)

12 < L el o+ o=+ Cmao

Observing that for u, v € B,(0) =« W§'P(£2)
1

1
[ (16+v+2zll,)dt < € [ m(1+20)%dt < Cm),
0

0

where C(m) is a constant depending. only on m, and doing similar calculations we get

=0 p =
(1.3) ff|a+v+1zw—1|z||Vz|dth< C%[|z|[§+C(m) [|z]|Bice -1,
2 0

Next we have

1
TeP llz115-.

(1.4) f f|z| \Vzldxdr < & Hzll" pot g
Since p > 2, therefore
[IzI15- =gf!21”'dX€ Clliz?llp-1 < Cliz|l5/®=".
Putting this estimate into Eq. (1.4) and taking into account Egs. (1.2) and (1.3) we have
Ty (0+u, 0+0) < % 12112 4.5+ Clm)||2]|5/¢" .
Combining thus with the estimate of Jol we get

s = = = P =
Jo(O+u, 0+0)+J,(0+u, 0+0) > (C—i:) |]z||;’v(1)_,,—C(m)llzl[ﬁ,’/“"“.

5 Arch. Mech. Stos. 5-6/83 L
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p

If we choose & such as to have C— o > 0 for u, v € B,,(0) we have

(AO+u)— A0 +9), u—v> = — C(m)|[u—ov|[B/P=D,
Let us define
H:R*xR* - R*,H(x,y) = 6(x)yP/(P—1)_

H is continuous and lim —H(x ty) = 0 because p/(p—1) > 1 for p > 2.

-0+

Furthermore we have for u, v € B,,(0)
(A +u)— A0 +9), u—v) > —H(m, |lu—2l|,),

which means that the condition 2 of Def. 1 is satisfied.

Step 3. A4 is coercitive.
We have for ue W}e():

CA@+1), uy = <CA®), uy +To(u+6, 6)+J,(u+0, 0)
> (AO), uy+Cllullb g0+ 1 (u+0, 6).
Using

|“v9+w[q+l||”‘ 10+ull2,., and 10 +u9|[5; < CJ16+ul|,

we have from the assumptions IIb and IIla
<A(§): u>+J1(u+0—’ 6) = f[QO(Vé, X)+QI.(Vu+V6_9 u+9_s X)] - VudX
Q2
< [ (VP + 1)+ ay(L+u+01= + [Vu+ V=) [Vu| dX
9 v

< [ [C+CQU+ult+Vuf)] [VuldX < [ (CIVul+ Clul#|Vu| +C|Vult*!)dX
] Q

< | i+~ (means @) [+ L1 swiue
= P lp 'SP' P W},"

1 " e?
+W (means (Q))p +C—E—' ”u“;’é”

1 " . R
+CWH!£H;,6., where p =L, b =p4q.

Therefore

_ eP 12
KAOB+u), u) > C[(I—T—S'“ ) Ileal Gy r—”ullwl > ]
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e? _r .
If we choose ¢ such as to have 1—-7--ea+l > 0 we obtain

lim {AO+u), up -
lullygrvw  Hllyge
because p—1 > p—1.
So A, is a coercitive bounded Gérding operator and we conclude from Theorem 1
that A4, is surjective, so there exists u € W§'(2) that for any
ve Wgr(@Q), <A+, o) =2

and 0 = 0+u e W?(Q) satisfies <A(6), 2> = {f, v for any v € Wi?(R2) and 65 = 6,.
Theorem 1.1 is proved.
APPLICATION 2. Let us consider the map

Az WER(Q) > W1 (),
where 1 < p < co0, and formulate the problem:
For a given fe W-1P'(Q) find 6 € WiP(Q) such as to have for any v € W§'P(£2)
A®), > = [ Q(X, 6(X), VO(X))- Vedx+ [ q(X,6(X)) vdX = — [ f(X)vaX,
2 2 2

where

I. OX,u,v): Q2xRxR*—> R} qX,u):Q2xR—->R
are continuous in u € R, v € R? for almost every X € £ and measurable in X € 2 for every
ueR, ve R

II. There exists k € L?'(2) such that for X € 2

10X, u,v)| < C(JulP~! +[v]P~* +[k(X)]),
lg(X, W) < C(lulP~* + k(X))
If these assumptions hold, then we can easily verify that
A: W3P(2) » W-2(Q) = (WP(Q)).

We give now two lemmata which are simple consequences from the theorem 2.1 in
KrasnosieLskny [1].
LeMMA 1. Let u, — u strongly in LP(£2) and v, w € W'P(£2). Then

o(X, u,, Vo) » Q(X, u, Vo) strongly in  (L7'(2))*,
q(X, u,) — q(X, u) strongly in  LP'(2).
LEMMA 2. Let u, — u strongly in W'?(Q), v € LP(£2). Then
O(X,v,Vu,) » Q(X, v, Vu) strongly in (L7 (2))>.

Now we can formulate an existence theorem.
THEOREM 2.1. Let the assumptions 1, 11 hold and
3. A is a coercitive operator.
4. There exists H:R* x R* — R* continuous and such that for any x,y € R*

lim L H(x,ty) =0
-0+ 1

5*
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and for
u,v € B,0) ={we WiP(2): || llyse < m},

[O(X, u, V) —Q(X, v, V)] - (Vu—Vo) > —H(m, [lu—2|],).

Then A is surjective from W§'P(2) onto W—12'(Q)
Proof.

Step 1. We show that 4 is a variational Garding operator.

Let us put W§P(Q) as U and LP(Q) as V in Def. 2. We denote for u, v, w € W3'P(Q)

a,(u,v,w) = fQ(X, u, Vo) VwdX,
2

aolu, w) = [ q(X, wyw(X)dX.

The map w — a(u, v, w) = a,(u, v, w)+ay(u, w) is continuous from W{'?(2) in R for
any u, v € Wi?(2). We define

A: WEP(@Q)x WEP(Q) » W-12(2) by {(A(v, w), w) = alu, v, w).

Then A(u, u) = A(u). Other conditions from Def. 2 are proved in the following way.
1."Because of Lemma 2 lim Q(X, u, Vo, +1Vv,) > O(X, u, Vo,) strongly in (L7 (£2))?,

-0
therefore for any u € Wi ?(2) the map v — A(v, u) is radially continuous from W¢'?(Q)
into W-1P'(Q).

2. We can check this condition easily using the assumption 4.

3. We can verify similarly to the next step of the proof that the operator u — A(v, u)
is bounded for any v e W3'P(£2).

4. Let u,v, w, u, € W3'?(2), u, » u weakly in W3'?(22). Then

A, u), wy = [ QX, uy, VW) - VwdX + [ g(X, u) w(X)dX.
: 7]

2

If we choose a subsequence u,, , u, — u strongly in L?(2), then from Lemma 1 we have
O(X, uy,, Vo) = Q(X, u, Vo) strongly in (L?'(2))* and q(X, u,) — q(X, u) strongly in
L' (82). Thus we conclude that 4(v, u,) — A(v, u) weakly in W=1?(Q) for any v € W P ().
Because this convergence holds for any subsequence which converges strongly in LP(£2),
then we have it for the sequence u,.

5. Let u, —» u weakly in W{P(2), A(v, u,) — f weakly in W17 (Q) for v € WiP(R).
From Lemma 1 we have

O(X, uy, Vo) > Q(X,u, Vo) strongly in  (L7'(2))3,

q(X,u,) —» q(X,u) strongly in L#(Q).
Hence
a.l.(ua ‘Ua un) = a].(u) 'U, u)'

Using the Hélder’s inequality we get from the Assumption II

|a2(un’ N"—Ll)l < C[Ill,,—ll”p-
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Choosing a subsequence u, — u strongly in LP() we have

az(un,,s u) - <fa u)—al(u, <, u)'

As a result we get for the sequence u,

<Z(‘U, urr): un> = al(uns v, un)+al(um un) = <fa H>.

Step 2. We must show that 4 is a bounded operator. From the Assumption II we
have

[KAG@), wy| < le(X, u, Vu)| - [Vw|dX+ f lg(X, w)| - [w(X)|dX

2 2
< [ CQVuP=t4 [Pt +[k]) - [Vw|dX+C [ (ul?=*+ k] - [w]dX

Q a
< O+ 9=+ el 17+ Kl -

Hence ’

4@ -1 = sup  [KA@W), wy| < C(lullws.p +1IKll5.)-

]

So A is bounded from W{}'P(Q) into W-1P'(Q). Therefore all assumptions of Theorem 2
I:old and we conclude that A is surjective from W('P(£2) onto W-1P'(Q).
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