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On generalized solutions of a nonlinear boundary value problem
of elasticity
Nonresonance case

J. CHMAJ and M. MAJCHROWSKI (WARSZAWA)

THE DiriCHLET problem for the general Lamé equations is considered. The right hand side
of Lamé equations depends on the displacement vector function. Sufficient conditions are given
for the existence of the weak solution to the problem under the assumption that the homogene-
ous problem has only the trivial weak solution (nonresonance case). To prove existency
Schauder’s Fixed Point Theorem is employed.

Rozwazono zagadnienie Dirichleta dla ogdlnego uktadu rownan Lamégo. Prawa strona roOwnan
Lamégo zalezy od wektorowej funkcji przemieszczenia. Podano warunki dostateczne dla istnie-
nia stabych rozwiazan problemu przy zalozeniu, ze zagadnienie jednorodne posiada wylacznie
trywialne rozwiazanie slabe (przypadek bezrezonansowy). Dla udowodnienia twierdzenia
o istnieniu rozwigzania zastosowano twierdzenie Schaudera.

Paccmotpena 3amaua Jupuxite qis obmeit cuerembl ypaBHenuit Jlame. ITpasasi ctopoHa ypas-
HeHui Jlame 3aBHCHT OT BEKTOPHOH (PYHKIMH ImepemenieHus1. IIpuBegeHbI JOCTATOUHBIE YCIIO-
BHA IUIA CYLIECTBOBaHMA C/1abbIX PEUIeHHH 3aqauyd NPH NPeINoJIOXKeHHH, 4TO OXHOPOIHAs!
3agaua 0o0agaeT HCKJIIOUMTENIBHO TPHBHMAJIBHBIM CJ1a0bIM pelueHueM (De3pe3oHaHCHBIA Ciy-
yair). A AoKasaTenbcTBa TEOpeMbl CYLIECTBOBAaHHs pelleHHs INpuMeHeHa rteopema Illay-
nepa.

1. Introduction

LET D = R® be a domain with a Lipschitz boundary 8D. We consider the following
Dirichlet Problem of the Theory of Elasticity. Find the displacement u that satisfies the
general Lamé equations

ou;  duy

3
(1.1) _3%' (/1divu)+gll1 [_3% 7 (———+——)] +oiuy = —g/(x,u(x)), xeD,

ox;  Ox

subject to the conditions
1.2) u(x)=0, xeoD (=1,2,3),

where A, u are Lamé coefficients, w is a real constant, g: Dx R*> - R> is a given vector-
function.

The problem (1.1), (1.2) in the linear case, i.e. g(x, u(x)) = g(x), has been considered
by many authors. The classical solution has been obtained, among others, by V. D. Kup-
RADZE in his monograph [4]. J. NeCas and T. HLAVACEK [5] proved the existence of a gen-
eralized solution by the Variational Method.

A nonlinear problem of a somewhat more complicated type, but only in the case of
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constant Lamé coefficients, has been considered in the paper [2]. In this paper we are con-
cerned with the existence for weak solutions of the problem (1.1), (1.2).
We introduce the following spaces:

. W= [L*(D)?, (ueW means u;€L*(D), i=1,2,3),
= [H,)?, H, is the usual Sobolev space.

The norms in W and W are given by

3
il = (3 1hali3) %, where  flullza = ( [ i?a)™,
D

i=1

3
i = (3 iz ), where  lllly, = ( [ Vel + ju)dx)
i=1 D

Spaces W, W are Hilbert spaces Inner products have the following form:

W, D)y = 2 @, 2)is = f (2 uv,) dx,

3 3
(u, v)y Z (uy, v)g, = IZ (Vu, Vo, +u;0;) dx,

i=1 D i=1
respectively.

Assume that the functions g;(x, u,, u;,us) i=1,2,3, satisfy the Carathéodory
continuity condition, i.e. g; are measurable with respect to x for fixed (u;, u,, us), u; €
€ (— o0, o0) and continuous in (¥, u,, u3) for almost all x € D.

The Lamé coefficients satisfy the following conditions: A, 4 € L®(D) and A(x) > 0
u(x) = po > 0 for all x € D, where u, is a constant.

DErINITION 1.1. A function u is said to be the weak generalized solution to the Dirichlet
problem (1.1), (1.2), if

(1.3) ue W,

,u u ov v,
(1.4) Df [‘(dwu)(dlvv)”r Z(axf )(axf“LaxJ )]d"

—? I(S uiv,) d;c = I(Zg,(x, u(x))'vi(x)) dx forall veW.

i=1

The meaning of the definition of the weak solution is as follows. The condition (1.3)
means that ¥ = 0 on 8D in the sense of traces. Suppose now that the weak solution u is
sufficiently smooth. By Green’s formula [5 p. 20] we have from Eq. (1.4)

3
d . d ou; oy }
(1.5) bf{ﬁax, (Adivu) +j:El [ax, ,u( 7%, -+ o, )] +o?u+gi(x, u(x)) vidx = 0,

forall v = W, (i=1,2,3).
This means that u satisfies Lamé equations (1.1) in the weak sense; they are met al-
most everywhere in D in case the expression in the brackets belongs to L?(D).
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2.  Preliminaries

Let us define in W a bilinear form {u,vds by the following formula:

AN )(av, av)]
21 {u, o)y = f[).(dwu)(d1vv)+ 5 “ 1( Bxl ax, | \ox, + ox, dx.

The bilinear form {u, v)y satisfies the axioms of the inner product and defines a norm
on W by

2.2) |l = (Cuy wpi)'2.

The norm ||u|| is equivalent to the usual norm in W, i.e. there exist positive constants
¢y, ¢, such that for all u e 14

2.3) ullf < cqllulls,

2.9 el < lull.

In fact, by the assumptions on 4 and u

3
(i = [ [l(divu)2+% 2( g ) ]dx
Li=1

& axi ij
3 3
ou \* (au, (aui )2
W) L) | ] a
Sfl:"lzj(ax,)“‘ (ax + %, o
D i=1 hj=1

3 3
A 1
< 3M1AlLe X el + 20l > il = Il +2lalla) 1l
i=1 i=1

w

Denoting (3[|4]|, +2[|ull)"* = ¢;, we get the inequality (2.3).
To prove the inequality (2.4) we take advantage of the following Korn’s inequality
([3] section 12):

3

N[ (ew e\
2. v i S 2
2:5) f : [2 (axi ‘o )] dx > Cllull 3,

D ij=1

for ue W, (C is a constant).
We have now

3

. 2
(ullF)? > 2 fﬂ [%( oy +ﬂ)] s
1

ox ox
b ij= ! #

R 1 ou, au \|°
j i 2

D ij=1

Taking ¢, = }/2u,C, we obtain the inequality (2.4).
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An inner product (u,v), for a fixed ue W is a linear continuous functional on W
with respect to the norm || - ||§. Indeed

3 3
(ol = [wvidx| < D llulleallod e
i=1 D i=1

1 -
< lullwllvllw < lullwllolly < F [faallw 12115 -

By Riesz’s Theorem there exists a unique element Au € W such that
(2.6) CAu,vdy = (u,v)y for all wve W.

The element Au satisfies the inequality
i 1
2.7 [ Aulli < — llullw.
C2

The relation (2.6) defines an operator A: W — Wbeing linear and continuous on W. The

restriction of the operator 4 to PoV ie. Alg: W Wis compact. This is a direct corollary
from the Rellich’s Theorem (see [1] p. 30).

3. The sufficient condition

THEOREM 3.1. Let g = [g,, g2, &3] be the vector-function satisfying conditions as spec-
ified in Sect. 1. Assume further, that g; (i = 1,2, 3) satisfy the following inequality:

3
3.1) e, w13, u3)| < @D +b D)
k=1

where a;(x) € L*(D), b > 0.

If the linear homogeneous problem

3
(3.2) o . Z[ 0 ( 3ui all_,v )] I D
o, (Adlvu)-{-j=1 7, 7 7%, + o, +w?y, , Xx€D,
(3.3) w(x) =0, xedD (i=1,2,3),

has only the trivial solution, then there exists a weak solution of the nonlinear problem (1.1),
(1.2).

Proof. For fixed ue W and arbitrary v € W we have
3
i |
(gCe, u@),0),| = |3 [ e, ut)vix)ax,
i=1D

3
< D (llg (x, w@)lus llwilles) < (M, + M+ M) o]l < [
i=1

M +M,+ M,
Ca

where ||g;(x, u(x))||.. = M; for i = 1,2, 3, (M; may depend on u). Hence the inner prod-
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uct (g(x, u(x)), 'u)W is the linear continuous functional on W with respect to the norm
[| - |l%. Therefore, there exists a unique T(x) € W such that

(3.4) (T, 3w = (g(x, u®). ),
while
3.5 O

Operator T: W — W is not, in general, linear but, as we shall prove, continuous. In fact,
for all w,ve W

(IT@ - T@)1F)* = {T@w)-T@), Tw) - T(@))w
= (g0x, W) —g(x, ), Tw)~T())w < llgx, W)—g(x, )llw [1T)—T(0)|lw

< } llgCx, 0)—g(x, 0)llw 176 — T@) -
Hence

G.6) 1T -T@) < CL g, 1) —g(x, )l

3
1/2
- j(}; Df 11 (5, 1000, 020, 0509) 21 (5, 24 0), 220, wa(0) )

By the conditions imposed on the g(x, u,(x), uy(x), u3(x)) operators G;: W — W de-
fined by Giu = gi(x, u;(x), u,(x), us(x)) are continuous (see Theorem 19.2 of [6]). Hence
the inequality (3.6) implies continuity of the operator T. By Rellich’s Theorem the res-
triction Tz : W — W is compact.

In view of the definition (2.1), the relations (2.6) and (3.4), Eq. (1.4) may be written
in a purely operator form:
(3.7 u—w*Au = T(), ueW.

Since the only solution of the homogeneous equation (I—w?A)u = 0 is the trivial solution
u = 0, by Fredholm’s Alternative (operator A is linear and compact) it follows that there
exists a continuous inverse operator (/—w?4)~!. Now Eq. (3.7) takes the form
(3.8) u=(I-?A)'Tw), uecW.
Denote @ = (I—w24)~'T, @: W — W. The operator @ is compact since it is the compo-
sition of continuous and compact operators.

By using Schauder’s Fixed Point Theorem: “A compact operator @ of a closed boun-
ded convex set K in a Banach space X into itself has a fixed point”, we will prove that @

has a fixed point in W — a solution of Eq. (3.8), i.e. a weak solution of the nonlinear
problem (1.1), (1.2).

Let us consider a ball K(0, R) = {u € W |lullf < R}, where R > 0 is a constant which
will be chosen later on. K(0, R) is a closed bounded convex set in the Banach space W.
Denote |[(I—w?A4)~!|| = N. By the definition of the operator @ we have

(3.9) P15 < NIIT)Il5%-
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To prove that @ maps K(0, R) into itself, we have to find estimates of M;, (i = 1, 2, 3).
By the assumption (3.1)

3 3
= [ lai(x, u)iax < < [|at+2a0)0 kZ g +52 ( 3 1l e
=1 k=1

D

< a2 +2 V3 bllay|allullw + 362 ulli < llailZ:+2V/3 —llaz||L=IluIlw+3 2 Ilull

"

Taking advantage of Egs. (3.5) and (3.9) we obtain

3
. _ V3N
(3.10) |[ Py < . [2(

i=1

Let u € K(0, R). From Ineq. (3.10) it follows that if the inequality
3
3N 7 = b 3b2
@.11) =3 (Hainz,+3 V3~ llai : )< R?
e &~ c, c3

is satisfied, then ®@(u) € K(0, R).
The inequality (3.11) is satisfied for
A +Y/44,(1 —A3)+ A3
2(1—45) ?

R>

where

3 _ 3
3N? 93N
4= Dladiz, 45 = 252 Y ailes,

i=1 i=1
7N2 2 . 2
Ay = ~2——4b—, provided 0<b < ] -
3 3Y3N

Therefore by Schauder’s Fixed Point Theorem @ has a fixed point in K(0, R) = W.
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