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On generalized solutions of a nonlinear boundary value problem 
of elasticity 
~onresonance case 

J. CHMAJ and M. MAJCHROWSKI (WARSZAWA) 

THE DIRICHLET problem for the general Lame equations is considered. The right hand side 
of Lame equations depends on the displacement vector function. Sufficient conditions are given 
for the existence of the weak solution to the problem under the assumption that the homogene­
ous problem has only the trivial weak solution (nonresonance case). To prove existency 
Schauder's Fixed Point Theorem is employed. 

Rozwazono zagadnienie Dirichleta dla og6lnego ukladu r6wnan Lamego. Prawa strona r6wnan 
Lamego zalezy od wektorowej funkcji przemieszczenia. Podano warunki dostateczne dla istnie­
nia slabych rozwi(lzan problemu przy zalozeniu, ze zagadnienie jednorodne posiada wyl(lcznie 
trywialne rozwi(lzanie slabe (przypadek bezrezonansowy). Dla udowodnienia twierdzenia 
o istnieniu rozwi(lzania zastosowano twierdzenie Schaudera. 

PaccMoTpeHa aa~aqa .[I;Hpmme ~JUI o6I.QeH CHCTeMbi ypaaHeHHH JlaMe. Ilpaaas~ cropoHa ypaa­
HeHHH JlaMe 3aBHCHT OT BeKTOpHOH ¢YHKI.J;HH rrepeMei.QeHWI. IlpHBe~eHhl ~OCTaTO~bie YCJIO­
BH.H ~JI.H cyi.QeCTBoBaHH.H cJia6biX perneHHH aa~aqH rrpH rrpe~rroJio»<eHHH, qTo o~opo~a.H 
3a~aqa 06Jia~aeT HCKJIJOqHTeJibHO TpHBHaJibHbiM CJia6biM perneHHeM (6eape30HaHCHbiH CJiy­
qaji), ,IVm ~oKa3aTeJihCTBa TeopeMhi cyru;ecTBOBaHH.H perneHH.H rrpHMeHeHa TeopeMa Illay­
~epa. 

1. Introduction 

LET D c R3 be a domain with a Lipschitz boundary oD. We consider the following 
Dirichlet Problem of the Theory of Elasticity. Find the displacement u that satisfies the 
general Lame equations 

3 

~(,ldivu)+ ~ [-~ p, (out + ou1
)] -l-w2u1 = -g1(x, u(x)), 

ox, 4 OX) ox) ox, 
}=1 

(1.1) XED, 

subject to the conditions 

(1.2) XE oD (i = 1' 2, 3), 

where A, p, are Lame coefficients, w is a real constant, g: D x R3 -+ R3 is a given vector­
function. 

The problem (1.1), (1.2) in the linear case, i.e. g(x, u(x)) = g(x), has been considered 
by many authors. The classical solution has been obtained, among others, by V. D. KuP­
RADZE in his monograph [4]. J. NECAS and T. HLAVAcEK [5] proved the existence of a gen­
eralized solution by the Variational Method. 

A nonlinear problem of a somewhat more complicated type, but only in the case of 

http://rcin.org.pl



708 J. CHMAJ and M. MAJCHROWSKI 

constant Lame coefficients, has been considered in the paper [2]. In this paper we are con­

cerned with the existence for weak solutions of the problem (1.1), (1.2). 

We introduce the following spaces: 

W = [L2 (D)]l, (u E W means u1 E L 2 (D), i = 1, 2, 3), 

W = [H1]3, H1 is the usual Sobolev space. 

The norms in W and W are given by 
3 

!lull~=(~ llutlli2r
12

, where 
i= 1 

where llu,II.H1 = ( J (!Vu,l 2 + iu1i
2 )dxf

12
• 

D 

Spaces W, W are Hilbert spaces. Inner products have the following form: 
3 3 

(u, v)w = ~ (u, vi)L2 = J (~ u,v,)dx, 
i=l D i=l 

3 3 

(u, v)w = ~ (u, v 1)i'I1 
= J}; (Vu1Vv1+u1v 1)dx, 

i=l D i=l 

respectively. 
Assume that the functions gi(x, u1 , u2 , u3 ), i = 1, 2, 3, satisfy the Caratheodory 

continuity condition, i.e. g; are measurable with respect to x for fixed (u1 , u2 , u3 ), u; E 

E (- oo, oo) and continuous in (u1 , u2 , u3 ) for almost all xED. 

The :Came coefficients sat~~fy the following conditions: l, fl E L 00 (D) and l(x) ~ 0, 

fl(x) ~ flo > 0 for all xED, where flo is a constant. 
DEFINITION 1.1. A function u is said to be the weak generalized solution to the Dirichlet 

problem (1.1 ), (1.2), if 
(1.3) u E W, 

3 

(1.4) J [ A{divu)(divv)+ i X ( ::~ + · !:; ) ( ~;, + ~;)]ax 
D l,J=l 

3 / 3 

-:-w2 J (2 u1v,) dx = J (2 g1(x, u(x))v;(x)) dx for all v E W. 
D i=l D i=l 

The meaning of the definition of the weak solution is as follows. The condition (1.3) 

means that u = 0 on oD in the sense of traces. Suppose now that the weak solution u is 

sufficiently smooth. By Green's formula [5 p. 20] we have from Eq. (1.4) 
3 

(1.5) J { a:, (Adivu)+ 2 [ a:
1 

fl ( !:; + :;. )] +w2u1+g1(x, u(x))} v1dx = 0, 
D J=l 

for all v = W, (i = 1, 2, 3). 
This means that u satisfies Lame equations (1.1) in the weak sense; they are met al­

most everywhere in D in case the expression in the brackets belongs to L 2 (D). 
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2. Preliminaries 

Let us define in W a bilinear form (u, v),v by the following formula: 

3 

(2.1) (u, v)w = J [ A(divu)(divv)+ i 2 ( ~;, + ~: )( ~~ + ~:)] dx. 
D ~1=1 

The bilinear form (u, v),v satisfies the axioms of the inner product and defines a norm 

on W by 

(2.2) 

The norm llull,i. is equivalent to the usual norm in W, i.e. there exist positive constants 

c1 , c2 such that for all u E W 
(2.3) 

(2.4) 

llull.i- ~ c.IIIullw, 

c21iullw ~ llull,i.. 
In fact, by the assumptions on A. and p, 

3 2 

(iiui,l.)2 
= J [-<(divu)2 + i 2 ( ~ + ~~!_) ] dx 

D {,j= 1 i J 

l 3 

~ 311A.IIoo 211utllh
1 
+211p,ll oo 211uJIIh

1 
= (311illloo+21ip,lloo)llull~· 

1=1 i= I 

Denoting (311A.II oo +21ip,lloo)112 = c1 , we get the inequality (2.3). 
To prove the inequality (2.4) we take advantage of the following Korn's inequality 

([3] section 12): 

(2.5) f ~ [_!__ ( ·auJ + oui -)12 dx;?: Cllullt, 
.4-J 2 OXt ox) . 

D l,J=l 

for u E W, ( C is ·a constant). 
We have now 

3 

(llull~)2 ;. 211' ~~ [ + ( ~;, + ~~:) r dx 

3 ]2 
;?: 2p,

0 
j. )' [_!__ ( ouJ + ~u1 

) dx ;?: 2p,o Cllull~ · 
""-/ 2 OX1 uXJ 

D i,}=l 

Taking c2 = ~12p,0 C, we obtain the inequality (2.4). 
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An inner product (u, v)w for a fixed u E W is a linear continuous functional on W 
with respect to the norm II· II~· Indeed 

3 3 

l(u, v)wl = ~~ J UtVtdxl ~ ~ llutiiL211vtiiL2 
i=l D i=l 

By Riesz's Theorem there exists a unique element Au E W such that 

(2.6) (Au, v)w = (u, v)w for all v E W. 
The element Au satisfies the inequality 

(2.7) - I I IIAullw ~ - lullw· 
c2 

The relation (2.6) defines an operator A: W-+ W being linear and continuous on W. The 

restriction of the operator A to W, i.e. Alw: W-+ W is compact. This is a direct corollary 
from the Rellich's Theorem (see [1] p. 30). 

3. The sufficient condition 

THEOREM 3.I. Let g = [g1 , g2, g3] be the vector-function satisfying conditions as spec­
ified in Sect. I. Assume further, that g1 (i = I , 2, 3) satisfy the following inequality: 

(3.I) 
3 

!gt(x, Ut, u2, u3)l ~ at(x)+b ~ iuk!, 
k=l 

where a1(x) E L2(D), b > 0. 

If the linear homogeneous problem 

(3.2) o . ~ ·[ o ( OUt ou1 )] 2 
oxt (J.divu) +? oxJ # oxJ + OXt +w Ut = 0, 

J=l 

(3.3) Ut(x) = 0, X E oD (i = I, 2, 3), 

XED, 

has only the trivial solution, then there exists a weak solution of the nonlinear problem (I.I ), 
(1.2). 

Proof. For fixed u E W and arbitrary v E W we have 

3 

l(g(x, u(x)), v)wi = ~~ J g1(x, u(x))v1(x)dxl 
i=l D 

where llg1(x, u(x))IIL2 = Mi fori= I, 2, 3, (M1 may depend on u). Hence the inner prod-
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uct (g(x, u(x)), v}w is the linear .continuous function~! on W with respect to the norm 

II· 11~. Therefore, there exists a unique T(u) E W such that 

(3.4) (T(u), v)w = (g(x, u(x)), v}w' 

while 

(3.5) 

Operator T: W -+ W is not, in general, linear but, as we shall prove, continuous. In fact~ 
for all u, v E W 

(IIT(u)- T(v)ll~) 2 = (T(u)- T(v), T(u)- T(v))w 

= (g(x, u)-g(x, v), T(u)-T(v))w ~ llg(x, u)-g(x, v)llw IIT(u)-T(v)llw 

~ _I llg(x, u)-g(x, v)llwiiT(u)-T(v)ll~. 
c2 

Hence 

(3.6) IIT(u)- T(v)ll~ ~_I lig(x, u)-g(x, v)llw 
c2 

3 

I ( " J )112 = c ,L..J /gt(x, ul(x), u2(x), u3(x))-gt(x, v 1(x), v2(x), v2(x))l 2dx . 
2 

i=l D 

By the conditions imposed on the gt(x,u 1 (x),u2(x),u3(x)) operators Gi: W-+ W de­
fined by Gtu = gi(x, u1(x), u2(x), u3(x)) are continuous (see Theorem I9.2 of [6]). Hence 
the inequality (3.6) implies continuity of the operator T. By Rellich's Theorem the res-

triction Tl w: W -+ W is compact. 
In view of the definition (2.I), the relations (2.6) and (3.4), Eq. (1.4) may be written 

in a purely operator form: 

(3.7) u-w2Au = T(u), u E W. 
Since the only solution of the homogeneous equation (/-w 2 A) u = 0 is the trivial solution 
u = 0, by Fredholm's Alternative (operator A is linear and compact) it follows that there 
exists a continuous inverse operator (I -w2 A)- 1 • Now Eq. (3.7) takes the form 

(3.8) 

Denote f/> = (/-w 2 A)- 1 T, f/>: W -+ W. The operator f/> is compact since it is the compo­
sition of continuous and compact operators. 

By using Schauder's Fixed Point Theorem: "A compact operator f/> of a closed boun­
ded convex .set Kin a Banach space X into itself has a fixed point", we will prove that C/J 

has a fixed point in W- a solution of Eq. (3.8), i.e. a weak solution of the nonlinear 
problem (I .I), (I .2). 

Let us consider a ball K(O, R) = {u E W; llull~ ~ R}, where R > 0 is a constant which 

will be chosen later on. K(O, R) is a closed bounded convex set in the Banach space W. 
Denote II(/-w 2 A)- 1 11 = N. By the definition of the operator <P we have 

(3.9) llf/J(u)ll~ ~ NIIT(u)ll~. 
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To prove that f/1 maps K(O, R) into itself, we have to find estimates of Mh (i = 1, 2, 3). 
By the assumption (3.1) 

. 3 3 

Ml = j lg,(x, u(x))l 2dx ~ f [af(x)+2a,(x)b}; lukl+b 2 (l' luklr]dx 
D D k=t k=l 

~ lla,lli.2+2 y3 blla,IIL211ullw+3b2 llulliv ~ lla,lli.2+2 y3 !!_ lla,IIL211ull~+3 b: llull~2 • 
c2 c2 

Taking advantage of Eqs. (3.5) and (3.9) we obtain 
3 

(3.10) llf/J(u)ll~ ~ Y3 
N [11 

(11a,ili.2+3 y3 !!_ lla,IIL211ull~+ 3b2

2 

llull~2)]
112

• 
c2 i=t c2 c2 

Let u E K(O, R). From lneq. (3.10) it follows that if the inequality 
3 

(3.11) 3N
2 2 ( - b 3b2 ) 

- 2- llatlli.2+3 V3 -lladiL2R+-2- R 2 ~ R 2 

~ . ~ ~ 

is satisfied, then f/J(u) E K(O, R). 
The inequality (3.11) is satisfied for 

-----~-

A2+y4A1(1-A3)+ M 
R~ -~~-~-~---

2(1-A3) 
where 

provided 
ci 

0<b<---
3y3N. 

Therefore by Schauder's Fixed Point Theorem f/1 has a fixed point in K(O, R) c W. 
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