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Surface waves in elastic Hadamard material 

K. SAXTON (WARSZAWA) 

IN THE PRESFNT paper we study the existence and properties of Rayleigh waves propagating 
in homogeneous isotropic Hadamard materials. An infinitesimal deformation is superposed 
on finite homogeneous static deformation. The constitutive functions must satisfy some restric
tions, first of all because we demand that acceleration waves may propagate through the medium. 
It is shown that for some situations there exists no Rayleigh type wave, and this result is in 
accordance with the conditions under which the surface becomes unstable. Finally, we discuss 
two different models of Hadamard material in order to show how the initial deformation and 
material constants have an effect on the propagation of Rayleigh wave. This knowledge could 
be useful in determining the forms of the strain energy function. 

Praca poswi~ona jest analizie fat Rayleigha propaguj~cych si~ w izotropowym materiale spr~
zystym typu Hadamarda. Na statyczne, jednorodne i skonczone deformacje p6Jprzestrzeni 
zostaly naloi:one odksztaJcenia nieskonczenie male. Wyprowadzono warunki ograniczaj~ce na 
funkcje konstytutywne wynikaj~ce z 4dania aby w p6lprzestrzeni propagowaly si~ fale przy
spieszenia. Udowodniono, ze istnienie fali Rayleigha zalei:y od funkcji materialowych i od 
wst~pnych dui:ych deformacji. Nieistnienie fali Rayleigha jest r6wnowai:ne utracie statecznosci 
p6lprzestrzeni. Dla dw6ch modeli materialu typu Hadamarda wyprowadzono warunki istnienia 
fali Rayleigha. Warunki te mog~ bye pomocne przy okreslaniu funkcji energii. 

Pa6oTa nocBSimeHa aHaJIH3Y peneeacKHX BOJIH, pacnpocrpaHIDOI.l.\HXCH a H30TpOnHOM ynpy
roM MaTepHane THna A~aMapa. Ha craTHqecKHe, o~Hopo~bie H KOHe~bie ~e<PopMa~HH no
nynpocrpaHcraa HanomeHbi 6ecKoHe~o MaJibie ~e<PopMarufH. Bhme~eHbi orpaHHqHaalOI.l.\He 
ycnoaH.H ~JIH onpe~eJIHIOI.l.\HX <PYHK~Hii, BbiTeKalOI.l.\He H3 Tpe6oaaHH.H, ~o6hi B nonynpocr
paHCTBe pacnpocrpaHHJIHCb BOJIHbl ycKopeHH.H. .[(OK33aHO, qTo CYI.l.\eCTBOBaHHe peneeBCKOH 
BOJIHbl 33BHCHT OT MaTepH3JibHbiX <I>YHK~HH H OT npe~BapHTeJibHbiX 6om.IIIHX ~e$opMa~HH. 
He~ecraoaaHHe peneeacKoii BOJIHbi 3KBHBaJieHTHO noTepH ycroiiqJiaocrH nonynpocrpaH
craa. .[(ml ~Byx MO~eJieH MaTepHaJia THna ~aMapa BbiBe~eHbl yCJIOBHH CYI.l.\eCTBOBaHHH 
peneeacKoii BOJIHbi. 3TH ycnoBHH MoryT 6hiTb none3HbiMH npH onpe~eneHHH <I>YHK~HH 3Hep
rHH. 

1. Introduction 

IN THE PRESENT paper we study the existence and properties of Rayleigh waves propaga

ting in homogeneous isotropic Hadamard materials. As a basis we use the results obtained 

by HAYES, RIVLIN [2] for isotropic hyperelastic materials in cases when an infinitesimal 

deformation is superposed on finite homogeneous static deformation. The governing sys

tem of equations is linear. The coefficients depend on material properties and on the 

amount of the initial deformation. These coefficients must satisfy some restrictions, first 

of all because we demand that acceleration waves may propagate through the medium 

and secondly from the vanishing of the traction on the plane bounding surface. 

The next step is to examine whenever Rayleigh waves can propagate. If the initial 

deformation is suitable, we show that for an arbitrary Hadamard material there is only 

one Rayleigh wave and it is a retrograde. For some values of the initial deformation and 
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732 K. SAXTON 

of the material constants it is shown that there exists no Rayleigh type wave propagating 
parallel to the free surface of the body and with its amplitude decreasing with distance 
from the surface. This result is an accordance with the conditions obtained by UsMANI, 

BEATTY [4] under which the surface becomes unstable. 
Finally we discuss two different models of Hadamard material in order to show how 

the initial deformation and material constants have an effect on the propagation of the 
Rayleigh wave. This knowledge could be useful in determining the forms of the strain 
energy function for Hadamard material. 

2. The system of equations 

First we investigate the full system of equations of niotion for an isotropic hyperelas
tic half-space occupying the region X2 ~ 0. We assume that motion depends only on 
(X1 , X 2 , t) and we have a decomposition: 

(2.1) 

It means that we can write the deformation FzL = oxzloXL as 

(2.2) 

Let us assume that the initial deformation is static and pure homogeneous: 

(

A2 0 0 ) 
F = 0 A2 0 . 

0 0 A3 

The Cauchy stress tensor aii associated with the doformation (2.3) is given by 

a(l.p = 0 (ex i= {J), 

C!a.a. = 2IIJ- 1l 2 {A~ W1 + A~(I- A~) W2 +IIIW3 }, 
(2.4) 

where 

I= AI+ A~+ AL II = AI A~+ A~ A~+ AI Ai, III = AI A~AL 

W1 = aw;ar, W2 = aw;arr, w3 = oWfoiii 

and W is the strain energy function W = W(I, II, III). The incremental stress ail associat
ed with the deformation (2.2) must satisfy the equation of motion in the coordinate 
system x: 

(2.5) 

where 

For the half-space X 2 = 0 we assume that the displacement u is simplified to 

u1 = u1 (x1 , x 2 , t), 

u2 = u2 (x1 , x 2 , t), 

u3 = 0 
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and thus the stress aii has the components (cf. HAYES, RIVLIN' [1, 2]): 

0:11 = c11 H11 +c12 H22 , 

(2.7) 
CT22 = c21Hu +c22GH22' 

a12 = a21 = 2III- 112 {Wt +A.~ W2}(A.iH21 +A.~H12) = b(A.iH21 +A.~H12), 

(j33 = 0:31 = 0:13 = (jl3 = 0:32 = 0, 

where 

Finally the governing system of equations contains the equation of motion and compat

ability conditions: 

leading to 

(2.9) V2- t (c21Hu ,2 +bA.~H12,1 +bA.iH21,1 +c22H22,2) = 0, 

Hu-v1,1 = 0, i,j = 1, 2. 

We are interested in the material in which the acceleration (plane) waves can propagate. 

Under this regime the constitutive function (energy function) must satisfy some restric

tions. The general three-dimensional case was investigated in several papers (HAYES, RIVLIN 

[I], OGDEN' [3]). The discussion of this problem for the half-space (system (2.9)) is simpler, 

it means that the well-known result is possible to get very quickly. The assumption that 

the bounding surface X 2 = 0 is traction-free in the configuration leads to additional 
' ' restrictions for A.1, A.2 , A. 3 and the strain energy function W. Then let us recall very briefly. 

We call a surface .I: an acceleration wave if the first derivatives of v and H on .I: are not 

continuous. The jumps of v and H are: 

[vt] =~:- o, [H,k,1] =~:- o. 
The unkown functions must satisfy at the surface .I: 

(2.10) 

[vt]- t (c11[Hu , t]+bA.~[H12,2]+bA.i[H2t,2]+ct2[H22,t]) = 0, 

[v2]- t (c21 [ Hu,2]+bA.~[ H12,1] +bA.i[H21,1] +c22[ H22,2]) = 0, 

[ilt,1]-[vt,1] = -0. 

Introducing the amplitude s1 = nini[ Hu,i] and using the compatability condition: 

[f.t] = ---:- A.nk[f.k] (for the arbitrary function f whose first derivatives are discontinuous 
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734 K. SAXl'ON 

at E, ). is the normal speed of propagation and n is normal to the surface E) we obtain 
two algebraic equations for s1 and s2 : 

(2.11) 
eJ.2s1 - (cu(n1

)
2
sl +bJ.Hn2)2sl +bJ.in1 n2s2+c12n1n2s2) = o, 

eJ.2s2-(c21n1 n2sl +bJ.~n1n2St +bJ.i(n1
)
2s2+c22(n2)2s2) = 0. 

Thus ). must be a root of 

(2.12) e2 J.4- eJ.2 {(cu +bJ.i)(n1)2 + (c22 +bJ.D(n2)2} 

+ {cu(nt)2 +bJ.i(n2)2} {bJ.i(n1)2 + c22(n2)2 }--:- (c2t +bJ.D2(nln2)2 = 0. 

For the special case of a Hadamard hyperelastic material, for which W(l, II, Ill) = 
= xl+yii+F(IIn (F is an arbitrary function of nn, the coefficients Cu' c22 and c21 
have the simple form: 

c11 = bJ.i+2III-1'2 {J.i J.~y+IIIF'(III)+2TIPF"(nn} = bJ.i+A-: 

c22 = bJ.~ +2III-1'2 {J.i J.~y+IIIF'(ID+21IF F"(III)} = bJ.~ +A~ 
(2.13) c21 = -bJ.~+2111_ 1 , 2 {J.i:A.~y+liiF'(IIn+21IPF"(IIJ)} = -bJ.~+A~ 

b = 2III-112(x + ).~ y), A= 2IIT-1'2 {J.i J.~y+ IIIF' + 2IIF F"}. 

Using Eq. (2.13), Eq. (2.12) gives 

(2.14) e2 J.4 -e.P {b(J.i(n1)2 + J.i(n2)2 )+ (cll(n1)2 + c22(n2)2)} 

+b(J.i(n1)2+J.i(n2)2)(cu(c1)2;tc22(n2)2) = 0. 

It is evident that real acceleration (plane waves exist for all n if the constants b, c11 and 
c22 are positive. 

CONCLUSION 1 
The necessary and sufficient conditions for propagating the acceleration wave in the 

Hadamard material occupying the h~lf space X2 ~ 0 are b > 0 and A > 0. 
Directly from Eq. (2.13), we have A= c22 - J.~b. Thus 

(2.15) A> 0 <=> c22 - ).~ b > 0. 

Further, if we demand to satisfy the boundary condition (no traction a22 = 0) when the 
body is subjected to a pure homogeneous deformation (2.3), then A1 , A2 , A3 are no longer 
arbitrary but between them there is a relation: 

(2.16) IIIF'(III) = -J.Hx+(J.i+J.Dy]. 

Putting Eq. (2.16) into Eq. (2.13) we obtain 

(2.17) 

Cu = (J.i- J.Db+ c22, 

C21 = -2J.~b+c22' 

c22 = 4IIP'2F'(III). 

Requiring c11 > 0 and c22 > 0 lead to 

(2.18) 
(J.i- J.~)(x+ J.~y)+21IIF" > 0, 

~ . 

F" > 0. 
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SURFACE WAVES IN ELASTIC HADAMARD MATERIAL 

Additionally, inequalities must be true which result directly from Eq. (2.16): 

(2.19) 
F' < 0, 

y+A~F' < 0. 

735 

When the surface is free of traction so that Eq. (2.16) holds, the acceleration waves may 
propagate only when A1 , A2 , A3 satisfy the inequalities (2.18). 

3. Rayleigh wave 

In this section we discuss the existence and properties of Rayleigh waves for Hada
mard. materials. After HAYES, RIVLIN' [2] we can look for a solution of the system (2.9) 
wheh the displacement components ui are given by 

u1 = fi(x2)expi(px1 +qt), 

(3.1) u2 = !2(x2)expi(px1 +qt), 

u3 = 0, 

where p > 0 and q < 0. 
The displacement (3.1) will represent the Rayleigh wave if u1 , u2 are to tend to zero 

as x 2 tends to infinity. The general solution of type (3.1) (obtained by HAYES, RIVLIN [2]) 
is 

Ut = (c12 +Aib)ip(m1Ae-m1x 1 +m2 Be-m2x 2)expi(px1 +qt), 

(
3

.
2
) u2 = {(eq2-c11p2 +mi A~b)Ae-m•x2 +(eq2 -c11p2 +~~A~b)Be-m2x2}expi(px1 +qt), 

where m1 , m2 must be positive roots of 

(3.3) A~ bc22 m4 + { c22 (eq2- cup2) +A~ b(eq2- AI bp2) + (c21 +A~ b)2p2} m2 

+ (eq 2-CuP2)(eq2-Afbp2) = o. 
This equation in the case of Hadamard material takes the form 

(3.4) . Mbc22 (; r -{Mbi(Ai-~A)b+c>>-Pl+c>>(-'ib-,8]}(; r 
where p is always positive through the definition 

(3.5) p = eq2fp2. 

+ [(Af-A~)b+c22-fl](Afb-p] ~ 0, 

Since Eq. (3.4) must give positive values for mi and m~, it follows that 

(Ai-ADb+c22-P > o, 
Aib-P > o. (3.6) 

Th~ inequality (3.6) together with Eq. (2.15) give 
CoNCLUSION' 2 
For a Hadamard material occupying a half-space which is homogeneously deformed 

with the surface X2 = 0 being free of traction, if the conditions of existence of accelera
tion waves are satisfied (Conclusion 1), then the roots of Eq. (3.4) are real if Aib-P > 0. 
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736 K. SAXTON 

To determine an equation for {3 we shall use the boundary conditions, that there is no 
surface traction in the state of pure homogeneous deformation and in the state of super
imposed infinitesimal deformation: 

(3.7) 

Introducing the solution (3.2) into these conditions and in order that A and B be nonzero 
[2], we obtain the equa:tion for {3: 

(3.8) [(.A.i-.A.Db+c22-{3] [(Ai-.A.~)b-{3] 

From Eq. (3.4) we find 

= {c22[(Ai-.A.Db-{3]+4.A.~b[c22-.A.ib)]} m1 m2 . 
p p 

[(Ai-.A.Db+c22l [.A.ib-{3] 
A~ bc22 

Then Eq. (3.8) can be written in the form 

(3.9) cz3 + 5dcz2 +z(llc-16d)d2 - cd3 = 0, 

where the following notations were introduced: 

z = .A.ib-{3, 
(3.10) d = .A.~b, 

Of course z ( cf. Conclusion 2) must be positive. 
The polynomial w(z) = cz3.+ 5dcz2 + z(llc-16d)d3

- cd3 can have only one positive 
root z0 (see Fig. 1). 

wti) 

z 

FIG. 1. 

The root z0 should be such that {3 = .A.i b- z0 > 0. 
There are three possibilities: 

(3.11) 
{3 = o~zo = .A.ib~w(.A.ib) = 0, 

{3 > o~zo < .A.ib~w(.A.ib) > 0, 

{3 < 0 ~ z0 > .A.ib ~ w(.A.ib) < 0, 
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where w(z0 ) = 0 and 

(3.12) w(.A.i b) = b3 
{ c22 [J.~- .A.~+ 5.A.~ .A.t + 11 .A.i .A.~] -16.A.~ ,;_i b}, 

when w(.A.ib) = 0; it means that the initial static deformation is unstable (cf. USMA.N'I~ 

BEATTY [4]). 
CONCLUSION 3 
For Hadamard material the Rayleigh wave exists if w(.A.i b) > 0. There is only one such 

wave and it is a retrograte. 

Proof. To show that the Rayleigh wave given by Eq. (3.2) is retrograde, we must 

prove that 

where the angle () is such that 

u+ 
tg() = _ 2 

ut 
and ut and uf mean the real part of Eq. (3.2). 

Using sign(~ tgo) ~sign(:) and the boundary conditions (3.7), we have 

(3 14) . ( d()) . [ q (mt + m2)(eq2- CuP2
) ] 

. stgn -dt ' =sign P (eq2-cup2)+mtm2c21 
/xl=O 

1. If c21 ~ 0, then Eq. (3.13) is true because of the inequalities (3.6). 

2. If c21 > 0 which is equivalent to c22 - 2.1.~ b > 0, then using c21 - c22 = - 2.A.~ b 
and Eq. (3.6) we have that 

(fJ- (Ai- ;.nb- c22) + m~:z2 
c21 

[(.A.f- .A.i)b + c22- {J] {( (.A.2 ;_2 b {J ;_2 b ;.2 b} 
c22[(.A.i-.A.i)b-{J]-4.A.ib[c22 -.A.ib] c21 -c22)[ 1 - 2) - l- 4 2 [c22 - 2 l 

is always negative and also in that case Eq. (3.13) is proved. 

4. Examples of Hadamard material 

In this section we discuss the condition w(.A.ib) > 0 for two different models of Ha

::iamard material 

W = xi+ yll +F(III). 

Model 1: F(III) = -(x+2y)lniii. 
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738 K. SAXTON 

Model 2: F(III) = "~I~y . (1) 

For the first model we calculate that 

(4.1) W(Aib) = 4Irr-tt 2b3 {(x+2y)(A1-A~+5AtA~+llAIA~)-8AIA~(x+A~y)}. 

a. If At ~ A2 , then we have always w(AI b) > 0 which means that in this case a Ray
leigh wave can propagate through the medium. 

b. If At < A2 , let us say A2 = kAt and k > 1, then 

( 4.2) w (AI b) = 4III-tt2 b3 A~ { (1 - k 6 + 5k2 + 11 k4)(x + 2y)- 8k6 Ai (x +A~ y)}. 

Using the boundary condition a22 = 0 (2.16): 

(4.3) k 2 Ai[x+(Ai+ADyl = x+2y, 

we have from Eq. (4.2) 

(4.4) w(Aib) = 4III-tf2 b3 A1 { -k6(x+2y- 8Aty)+3k4 (x+2y)+ 5k2 (x+2y)+ (x+2y)} 

= 4nr-tt2b3 A1N(k). 

CONCLUSION 4 
i) For the first model, for all At = A~ satisfying the inequality x + 2y > 8(A~)4y, 

there exists only one critical value k 0 such that N(k0 ) = 0. Then for all k > k 0 or, equival
ently, for all A2 > Ag where Ag = k 0 A?, there is no Rayleigh wave since N(k) < 0 for 
k > k 0 (cf. Eq. (3.1)J). We shall calculate from Eq. (4.3) the value A~ corresponding to 
the value A?, Ag, k 0 • 

ii) If At = A~ is such that x+ 2y < 8(A~)4y, then N(k) > 0 for all k. There is no cri
tical value of k and the Rayleigh wave can propagate through the medium. 

Similarly for the second model, for all At ~ A2 we have always w(Aib) > 0. If A2 = 

= kAt, k > 1 then 

(4.5) w(Aib) = 8b3A1JII- 3
'
2 {(x+2y)(l-k6 +5k2 + llk4)-4k8A1A~(x+A~Y)} 

= 8b3A1III- 312M(k). 

a 22 = 0 means that 

(4.6) 

The critical value of k is the solution of M(k) = 0 and Eq. (4.6); choosing k and A1 

as known values we calculate A~ from Eq. (4.6) and put it into M(k) = 0. 
Thus for the critical value k 0 we have the equation 

(4.7) M(Z) = z 1 a 7 +z6a6 +z5a5 +z4a4 +z3a3 +z2a2 +zat +a0 = 0, 

where z = k 2 and M(Z) = M(k), 

a1 = 4AHx+ Aiy), a6 = (x+2y)-4AHx+ Aiy), 

a5 = -l4(x+.ll')-20A~(x+A~y), a4 = 39(x+Ay)-4AHx+Aiy), 

a3 = 68(x+2y), a2 =· 39(x+2y), at = 10(x+2y), a0 = x+2y. 
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