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' BRIEF NOTES 

The effect of a circular cylindrical hole on the stress intensity 
at a crack tip 

E. SMITH (MANCHESTER) 

THE PAPER provides an analytical solution for the effect of a circular cylindrical hole (and rigid 
inclusion) on the stress intensity at a crack tip in an elastic material deforming under Mode III 
loading conditions. The results are compared with numerical solutions for the corresponding 
Mode I problems, and are used in a discussion of the effect of microcracks on the fracture 
toughness of brittle materials. 

1. Introduction 

IF A BRITTLE material, for example a rock-like material, contains a macr9scopic crack, 
the onset of crack extension is not accompanied by plastic deformation, but instead 
microcracks form in a zone ahead of the crack tip [1, 2]. The microcrack size is typically 
that of the structural element (e.g. the crystal size), and the microcracks form because 
there is a distribution of failure stresses for these elements. It has been surmised [1] that 
the microcracks around a primary crack may be regarded as being contained within two 
zones: (a) an inner zone very close to the crack tip where the microcracks interact or link 
with the primary crack and so provide the principal driving force for macroscopic crack 
extension, and (b) an outer zone in front of the crack tip where the microcracks reduce 
the effective modulus of the material within that zone. 

EvANS, HEUER and PoRTER [1] argue that this . reduction in the modulus within the 
outer microcrack zone is a source of toughness enhancement, i.e. is responsible for an 
increase in K1c, the magnitude of the crack tip stress intensity at the onset of crack exten
sion. To support their arguments, they rely on theoretical results [3, 4] for a crack whose 
tip lies within an elastic inclu5ion of lower modulus. These results in dicatethat, for a given 
applied stress and crack length, the crack op~ning decreases as the inclusion modulus 
decreases. Thus Evans, Heuer and Pork r argue that the crack op~ning decreases as the 
density of microcracks in the outer zone increases, and also as the size of this zone in
creases, thereby causing a corresponding increase in the material's resistanc~ to the onset 
of crack extension. However, the present author believes that it is inappropriate, when 
considering the effects of this outer zone, to use the results for a model in which a crack 
tip lies within an elastic inclusion of lower modulus. It is more appropriate to u5e the 
results from a model in which an elastic inclusion of lower modulus lies ahead of the crack 
tip, i.e. the crack does not penetrate the inclusion. In this context TIROSH and TETELMAN [5] 
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have analysed the model of a solid containing a circular cylindrical hole ahead of a crack 
tip, the hole centre lying on the crack plane arid the solid deforming under Mode I plane 
strain conditions. Their numerical results show that the hole produces an increase, not 
a decrease, in the crack tip stress intensity, the magnitude of this increase being greater 
the larger is the hole radius, and the nearer is the hole centre to the crack tip. On this 
reckoning, the author takes the alternative view to that of Evans, Heuer and Porter, and 
believes that the outer microcrack zone's presence is a source of weakness rather than 
toughness enhancement. 

Tl\is paper addresses the corresponding Mode III problem, for which it is possible 
to obtain analytical solutions. Thus the paper assesses the effect of a circular cylindrical 
hole on the stress intensity at a crack tip in an elastic material deforming under Mode III 
loading conditions. The results clearly show that the hole produces an increase in the 
crack tip stress intensity, the magnitude of this increase being greater the larger is the hole 
radius, and the nearer is the hole centre to the crack tip; there is therefore accord with 
the Mode I numerical results of TIROSH and TETELMA.N' [5]. Solutions are also obtained 
for the case where the hole is replaced by a rigid inclusion; in this case the rigid inclusion's 
presence produces a decrease in the crack tip stress intensity. 

2. Theoretical analysis 

The model is illustrated in Fig. 1. A semi-infinite crack exists within an infinite solid 
deforming under Mode III loading conditions, and there is a circular cylindrical hole of 
radius a situated ahead of the crack tip, the hole centre being at a distance s from the 
crack tip; the stress intensity due to the applied loadings is KA in the hole's absence. With 
such a mode III problem, the displacement w, which is parallel to the figure normal at 
all points of the solid, satisfies Laplace's equation 

(Jlw 82 w 
(2.1) ax2 + 8y2 = 0 

y 
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FIG. 1. The z = x+ iy plane containing a semi-infinite crack and a hole of radius a situated in front of the 
crack tip. The stress intensity due to the applied loadings is KA. in the hole's absence. 

the appropriate stress components being 

(2.2) 
p,ow 

Pxz = - 0x and 

where p, is the shear modulus of the material. Accordingly, there exists some complex 
function F(z), where z =:= x+ iy, such that the displacement is given by 

(2.3) pw = Re[F(z)] 
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and the stresses by 

(2.4) 
dF . pJJw ipJJw 
dz = Pxz-lPyz =---ax--ay· 

F(z) has to satisfy the appropriate boundary conditions, and in order to determine its 

value, the z plane is mapped into some other t( = e + irJ) plane where a solution can be 
readily obtained, using the relation 

(2.5) 
dF dF dz p,ow 
dt = dz · dt = ----a8 -

The conformal transformation that maps the region in the upper half of the z plane 

outside the cylindrical hole, into the upper half of the t plane, with the hole of diameter 

2a transforming into a crack of length 2a, and with corresponding points transforming 
as shown Jn Figs. 1. and 2, is 

(2.6) t-h = ~ [_(z~ s) + (z ~s) ]. 

A' 
B' c' D' £' r' 

FIG. 2. The t = e+irJ pl(\ne obtained from the z plane by the conformal transformation (2.6); corresponding 
points transform as shown (see also Fig. 1). 

where h is the distance between the semi-infinite crack tip and the mid-point of the finite 

crack ahead of the semi-infinite crack in the t plane. The complex function that satisfies the 

boundary conditions in Fig. 2 is given by the relation 

(2.7) 
dF i(±A±Bt) 

dt- yt(t-h+a)(t-h-a) ' 

where A and Bare real constants whose values remain to be determined (the ± signs are 

to ensure consistency with regard to the branch taken by the function). For large t, z, 
the relation (2.6) gives t = z/2, and since KA is the stress intensity due to the applied load
ings in the hole's; absence, then 

dF -iKA ±iB 
dz - Jf 2nz - y2z 

(2.8) 

using the relation (2. 7), whereupon 

(2.9) 
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For small t, and z, the relation (2.6) gives, in view of 

(s2 +a2) 
(2.10) h = 2s 

the result 

(2.11) 

E. SMITH 

Thus if KL is the stress intensity at the tip of the semi-infinite crack in the original model, 
then 

dF -iKL ±iA v s2 -a2 

(2.12) - - --- . 
dz - l/ 2nz - yz 2s2 (h 2

- a2
) 

using the relations (2. 7), (2.1 0) and (2.11 ), whereupon 

{2.13) 

To ensure that the total dislocation content within the cylindrical hole in the z plane, 
-or within the crack in the t plane, is zero, the integral of dwfds between the limits s = 
= h-a and s = h+a must be zero, whereupon the relation (2.7) gives 

{2.14) 

an expression which simplifies to 

{2.15) 
A E(k) 
B = ±(a+h) K(k)' 

where E and K are complete elliptic integrals .with k 2 = 2m/(1 +m) where m = a/h. 
It finally follows from the relations (2.9), (2.10), (2.13) and (2.15) that the ratio of the 

·stress intensity at the crack tip in the original model to the stress intensity in the hole's 
absence is 

{2.16) 

with 

{2.17) 

KL = y1-A2 (1- A) E(k) 
KA (1 +A) K(k) 

k2 = 1- ( 1- A )2 
1+A 

and with A= ajs. The relations (2.16) and (2.17) enable the ratio K1../KK to be determined 
as a function of the parameter A = afs, and the results are shown in Table 1. These re
-sults clearly show that the hole produces an increase in the crack tip stress intensity, the 
magnitude of the increase being greater the larger is the hole radius, and the nearer is 
the hole centre to the crack tip; there is therefore accord with the Mode I numerical re
·sults of TIROSH and TETELMAN' [5]. 

The preceding analysis is easily extended to the case where the cylindrical hole is re
placed by a rigid inclusion, full cohesion being maintained between the inclusion and the 
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\ 
surrounding material. The same conformal transformation is used, but the crack of length 
2a in the t plane for the hole problem disappears, and the required complex function sat
isfies the relation 

(2.18) 

Table 1 

a 
A.=

s 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

dF -iA 
-dt = y't . 

KL . 
-- (hole) 
KA. 

1.000 
1.005 
1.016 
1.048 
1.092 
1.142 
1.214 
1.333 
1.485 
3.005 

K 
- -~ (inclusion) 
KA 

1.000 
0.995 
0.980 
0.954 
0.917 
0.866 
0.800 
0.714 
0.600 
0.436 

The ratio of the stress intensity (Kd at the crack tip to the stress in
tensity (KA) in the hole's absence, as a function of the parameter 
A. = a/s; a is the hole radius and s is the distance between tlle crack 
tip and the hole centre. The results are also given for a rigid inclusion. 

For large t, z, it follows, by use of arguments similar to those adopted for the circular 
cylindrical hole model, that 

(2.19) 

where KA is the stress intensity due to the applied loadings in the inclusion's absence. 
Similarly, by considering the small t, z, case it follows that the stress intensity KL at the 
tip of the semi-infinite crack in the original model is given by the expression 

·v· n(s2- a2) 
(2.20) KL = 2 • 

s 

It finally follows from the relations (2.19) and (2.20) that the ratio of !_he stress intensity 
at the crack tip in the original model to the stress intensity in the inclusion's absence is 

(2.21) KL = y'I-A.2 
KA 

with A. again equal to ajs. The results (Table 1) clearly show that, in contrast with a hole, 
the inclusion produces a decrease in the crack tip stress intensity, the magnitude of the 
decrease being greater the larger is the inclusion radius, and the nearer is the inclusion 
centre to the crack tip; again there is accord with the Mode I numeriCal · results of TIROSH 
and TETELMAN [5]. 
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3. Discussion 

The preceding section's theoretical results clearly show that the presence of a cylindri
cal hole ahead of a craC\ in an elastic material leads to an increase in the crack tip stress 
intensity, while the presence of a rigid inclusion leads to a reduction in the stress intensity. 
It follows that if the circular cylindrical hole is replaced by a cylinder with a modulus that 
is less than the modulus of the surrounding material, then the stress ·intensity is also en
hanced. The results, which complement the Mode I numerical results of TIROSH and 
TETELMAN [5], provide further support for the view, developed in the Introduction, that 
the microcracks that form ahead of a macroscopic crack in some brittle materials as a re
sult of the structural elements having a distribution of failure stresses, are a source of 
weakness rather than toughness enhancement, i.e. they are responsible for a reduction 
in K1c the magnitude of the crack tip stress intensity at the onset of crack extension. 

However, since the structural elements have a distribution of failure stresses~ the 
macroscopic crack front will be irregular, and crack extension will be more difficult, i.e. 
K1c will increase as a result of this irregularity. It is in this respect that the author believes 
that microcracking is responsible for larger than expected K1c values, rather than by a re
duced modulus effect from the other microcrack zone. 
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