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A class of exact solutions for the flow of a viscoelastic fluid 

K. R. RAJAGOPAL (PITTSBURGH) and A. S. WINEMAN (ANN ARBOR} 

THE FLOW of the BKZ fluid is studied in the case of two infinite paralled plates rotating about 
a common axis with the same angular velosity. It is shown that an infinity of exact solutions 
exist for a nontrivial subclass of these fluids. -

1. Introduction 

BERKER [1] established the e·xistence of an infinite set of nontrivial solutions for the flow 
of an incompressible linearly viscous fluid between two infinite parallel flat plates rotating 
with the same constant angular velocity about the same axis. The trivial rigid body motion 
is a special case of the infinite set. 

The form of the velocity field assumed by Berker was 

(1) u = -.Q(y-g(z)), v = .Q(x-f(z)), w = 0, 

where, u, v, ware the x, y and z components of the velocity, respectively. Equation (1) 
belongs to the class of "pseudo-plane" motions (cf. BERKER [2], [3]) and represents a mo
tion wherein in any z = constant plane, the streamlines are concentric circles, the locus 
of the centers being in general a curve in space, x = f(z), andy = g(z) det~rmining the 
equation of the locus. 

RAJAGOPAL [4] has shown that the motion represented by Eq. (1) is one with con
stant stretch history. He showed that this then implies that the equation of motion of 
a simple fluid is of the same order as the Navier-Stokes equation and thus the adherence 
boundary condition is sufficient for determinacy. In the specific case of an incompressible 
and homogeneous fluid of second grade, RAJAGOPAL and GUPTA [5] have established an 
exact solution for the equations of motion. 

In this brief note we study the flow of the fluid model introduced by BERNSTEIN', 
KEARSLEY and ZAPAS [6] between two infinite parallel plates rotating about a common 
axis with the same angular velocity. The fluid model, referred to as the BKZ fluid model, 
has proved useful in modeling the non-Newtonian behavior exhibited by certain fluids. 
In the case of an interesting but nontrivial subclass of these fluids, we find that an infinity 
of exact solutions exists, a result similar to Berker's analysis. In the case of the more gen
eral fluid model, the problem reduces to solving an integra-differential system with the 
appropriate boundary conditions. 
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2. Equations of motion 

For the sake of brevity, we refer the reader to [4] for the detailed kinematics of the 
motion represented by Eq. (1). It has been shown in [4] that this motion is one of constant 
stretch history. It follows that the stress T in the fluid can be represented by 

(2) 

where A1 , A2 , A3 are first three Rivlin-Ericksen tensors defined through 

A1 = gradv + (gradv)T 
and 

In the above equation, :r denotes the material time derivative. 

For the motion under consideration, a simple and straightforward computation 
yields 

( 

cos!J(t- t) sin!J(t- r) - g'(z)sin!J(t- r)+ f'(z) [1-cos!J(t- r)]) 
(3) Fr(r) = -sin!J(t-r) cosQ(t-r) g'(z)[1-cos!J(t-r)]+/'(z)sin!J(t-r) , 

0 . 0 1 

At= ( ~ ~ ~~~O~&)), 
Qg'(z) -Qj'(z) 

(4) 

A2 = ( ~ 
-Q2j'(z) 

(5) 

and 

(6) 

Thus it follows from Eqs. (2) and (6) that 
A 

(7) T = -pl+f(Al, A2). 

In view of Eqs. (4) and (5) the constitutive expression in Eq. (7) reduces to the form 

(8) T = -pl+f(/'(z)g'(z)). 

From the balance of linear momentum and the assumed form of the motion in Eq. (1), 
the equations for f(z), g(z) and p are found to be 

d.it3 a 2( ) dZ-ax(p+e¢) = -e!J x-f(z) ' 

(9) d,h3 a 2 ( ) dZ- 8--y-<P+ec/J) = -eD y-g(z) , 

dh3 _ _i_(p~e¢) = o, 
dz az 

where¢ is the potential from which the specific body force is derived, i.e. b = -grad¢. 
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The equations for f(z) and g(z), obtained by eliminating p+ec/> from Eqs. (9) are 

d~~3 -e!Jlf(z) = q, 

(10) 

d~:3 -e!J2g(z) = s' 

where q and s are constants. 
The indeterminate scalar field p is then given by the expression 

(11) 
e!J2 -

p+ec/> = -
2

- (x 2 +y2)+(qx+sy)+f33+c. 

The appropriate boundary conditions due to the adherence of the fluid at the top and 
bottom plates are 

(12) 

and 

(13) 

f(h) = f(- h) = 0 

g(h) = g( -h) = 9· 
If the locus of the centers intersects the z = 0 plane at (/, 0, 0), (the x-y axes can 

always be aligned in a manner that such is indeed the case), it follows that 

(14) /tO) = I, g(O) = 0. 

3. Fluid model 

The stress T in a BKZ fluid is given by 

I 

(15) T = -pl+2 f {U1 Cr- 1 ('r)- U2 Cr(r)}d-r, 
-oo 

where 

(16) 

In this constitutive equation, U is the strain energy potential which is a function of the 
principal invariants of Ct(T) and t- -r, i.e. 

(17) 

with 

{18) 

and 

(19) 

A simple computation yields 

(20) 

u = U(/1' 12, t- T), 

Ut = oU/olt, i =I, 2. 
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and 

(21) C;-1{'r) = 1+ (t--r) [1+2(1-C)(f'2+g'2)]A1 !J . 

. - (1;;2C)[l+2(1-C)(f'2+g'2)]A2+ (t;:) 2 

A~ 

(I - C)2 
2 S(l- C) 

+ !24 A2- !Jl (A1A2+A2At), 

where S = sin!J(t- -r), C = cos!J(t- -r). 
Also, 

(22) /1(t, ~') = 12(t, -r) = 3+2[1-cos!J(t--r)](f'2+g'2) = I(!J(t--r), z). 

It follows from Eqs. (4), (5), (15), (20)-(22) that 

fl3 (f'(z), g'(z), !J) = f'(z)B(z, !J)+g'(z)A(z, !J), 

(23) h 3 (/'(z), g'(z), !J) = -f'(z)A(z, !J)+g'(z)B(z, !J), 

j33 (f'(z), g'(z), !J) = P(z, !J)- (/'2 + g'2)Q(z, !J), 

where 

(24) 

in which 

(25) 

and 

(26) 

in which 

(27) 

4. Exact solution 

00 

A(z, !J) = 2 J U(I(!Ja., z); a.)sin!Ja.da., 
0 

00 

B(z, !J) = 2 J U(I(!Ja., z); a.)(I -cos!Ja.)da., 
0 

00 

P(z, !J) = 2 J U12 (I(!Ja., z); a.)da., 
\ 0 

00 

Q(z, !J) = 4 J U2 (I(!Ja., z); a. )(1-cos!Ja.)da., 
0 

U12 = U1(I, I, a.)- U2(l, I, a.), 

U2 = U2(I, I, a.). 

Let us consider the class of BKZ fluids wherein U1 and U2 are independent of 11 and 12 • 

Thus 

(28) 
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and hence the strain energy potential U has the form 

- (29) 

From the definitions (24) 

(30) 

751 

where G1 (.Q) and G2 (.Q) denote the real and imaginary parts of the complex shear modulus 
of linear viscoelasticity." Also, from Eqs. (26) and (27), P(z, .Q) and Q(z, .Q) become in
dependent of z. 

It follows from (10), and (23)1 , 2 and (30) that 

(31) 
f"G1 (.Q) + g"G2(!J)- e!J2f = q, 

-f"G2(.Q)+g"G1(.Q)-e!J2g = s. 

Let us introduce a complex valued function F(z) defined through 

F(z) = f(z)+ig(z), 

where i = y -1. Equations (31) imply that 

(33) F"- (m+in) 2F = (q+is) (G +iG) 
( G(.Q) )2 1 2 ' 

where m and n are defined through 

e!J2 - [G(.Q) + G (.Q)] 
2{G(.Q))2 

1 

and 

e!J2 [G(.Q) G (.Q)] 
2 ( G(.Q) )2 - t ' 

where 

(35) 

The boundary conditions (12), (13) and (14) become 

(36) , F( -h) = F(h) = 0 

and 
(37) F(O) = I. 

The system (33)-(37) can be solved exactly to yield 

(38)1 
I 

f(z) = Lf{(coshmhcosnh-coshmzcosnz)(coshmhcosnh-1) 

+ (sinhmhsinhnh- sinhmzsinnz)sinhmhsinnh}, 
and 

(38)2 g(z) = ~ {(sinhmhsinnh-sinhmzsinnz)(coshmhcosnh-1) 

- (cosh mh cos nh- cosh mz cos nz) sinh mh sin nh}, 
where 

(39) ' LJ = (coshmhcosnh-1)2 + (sinhmhsinnh)2
, 

m and n being defined as in Eqs. (34)1 and (34h, respectively. 
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From (11) and (23)3 , the indeterminate scalar field p+e</> becomes 

e!J2 
(40) p+e</> = -2- (x2 + y2) + (qx+sy)+ P(Q)- (f'2 + g'2)Q(!J) + c, 

in which 

le!J2 
q = -L1-(L1-l +coshmhcosnh), 

le!J2 . h h . h s = - -L1-sm m smn . 

(41) 

Note that when l = 0, that is the solution corresponding to the rigid body motion, q 
and s are zero. The shear stresses at the upper and lower fluid layers z = ± h, as calcu
lated from Eqs. (8), (23)1 , 2 and (30) are given_ by 

T13 = ~ (coshmh-cosnh)[(mG2(f.?)-nG1 (!J))sinnh- (mG1(!J) 

(42) +nG2 (!J))sinhmh)], 

T23 = ~ (coshmh-cosnh)[(mG2(!J)-nG1 (!J))sinhmh+ (mG1 (!J) 

+nG2(!J) )sinnh]. 

It is easily seen from Eqs. (30) thatf(z) and g(z) are even functions of z. Consequently, 
Eqs. (11) and (23) show that the shear stresses are odd functions of z while T33 is an even 
function of z. It follows that the normal tractions are either tensile on both the upper and 
lower fluid layers, or they are compressive on both layers. The tangential components of 
the traction vector point in the same sense on the upper and lower fluid layers. 
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