613.

ON THE GROUP OF POINTS G_{4}^{1} ON A SEXTIC CURVE WITH FIVE DOUBLE POINTS.

[From the Mathematische Annalen, vol. viII. (1875), pp. 359-362.]
The present note relates to a special group of points considered incidentally by MM. Brill and Nöther in their paper "Ueber die algebraischen Functionen und ihre Anwendung in der Geometrie," Math. Annalen, t. viI. pp. 268-310 (1874).

I recall some of the fundamental notions. We have a basis-curve which to fix the ideas may be taken to be of the order $n,=p+1$, with $\frac{1}{2} p(p-3) \mathrm{dps}$, and therefore of the "Geschlecht" or deficiency p; any curve of the order $n-3,=p-2$ passing through the $\frac{1}{2} p(p-3) \mathrm{dps}$ is said to be an adjoint curve. We may have, on the basis-curve, a special group G_{Q}^{q} of Q points $(Q \ngtr 2 p-2)$; viz. this is the case when the Q points are such that every adjoint curve through $Q-q$ of them-that is, every curve of the order $p-2$ through $\frac{1}{2} p(p-3) \mathrm{dps}$ and the $Q-q$ points-passes through the remaining q points of the group: the number q may be termed the "speciality" of the group: if $q=0$, the group is an ordinary one.

It may be observed that a special group G_{Q}^{q} is chiefly noteworthy in the case where $Q-q$ is so small that the adjoint curve is not completely determined: thus if $p=5$, viz. if the basis-curve be a sextic with 5 dps , then we may have a special group $G_{6}{ }^{2}$, but there is nothing remarkable in this; the 6 points are intersections with the sextic of an arbitrary cubic through the 5 dps-the cubic of course intersects the sextic in the 5 dps counting as 10 points, and in 8 other points-and such cubic is completely determined by means of the 5 dps and any 4 of the 6 points. But contrariwise, there is something remarkable in the group $G_{4}{ }^{1}$ about to be considered: viz. we have here on the sextic 4 points, such that every cubic through the 5 dps and through 3 of the 4 points (through 8 points in all) passes through the remaining one of the 4 points.

The whole number of intersections of the basis-curve with an adjoint, exclusive of the dps counting as $p(p-3)$ points, is of course $=2 p-2$: hence an adjoint through the Q points of a group G_{Q}^{q} meets the basis-curve besides in $R,=2 p-2-Q$,
points; we have then the "Riemann-Roch" theorem that these R points form a special group G_{R}^{r}, where
as just mentioned, and

$$
\begin{aligned}
& Q+R=2 p-2 \\
& Q-R=2 q-2 r
\end{aligned}
$$

viz. dividing in any manner the $2 p-2$ intersections of the basis-curve by an adjoint into groups of Q and R points respectively, these will be special groups, or at least one of them will be a special group, G_{Q}^{q}, G_{R}^{r}, such that their specialities q, r are connected by the foregoing relation $Q-R=2 q-2 r$.

The Authors give (l.c., p. 293) a Table showing for a given basis-curve, or given value of p, and for a given value of r, the least value of R and the corresponding values of q, Q : this table is conveniently expressed in the following form.

The least value of

$$
\begin{aligned}
R & =p-\frac{p}{r+1}+r \\
q & =\frac{p}{r+1}-1 \\
Q & =p+\frac{p}{r+1}-r-2
\end{aligned}
$$

and then
where $\frac{p}{r+1}$ denotes the integer equal to or next less than the fraction.
It is, I think, worth while to present the table in the more developed form:

n	p	Dps	$r=$					
			1	2	3	4	5	6
4	3	0	$G_{3}{ }^{1}$	$G_{4}{ }^{2}$.	.		.
			$G_{1}{ }^{0}$	$G_{0}{ }^{\circ}$.
5	4	2	G_{3}^{1}	$G_{5}{ }^{2}$	$G_{6}{ }^{3}$		-	.
			$G_{3}{ }^{1}$	$G_{1}{ }^{0}$	$G_{0}{ }^{\circ}$.	.	.
6	5	5	${ }_{G_{4}{ }^{1}}$	$G_{6}{ }^{2}$	$G_{7}{ }^{3}$	$G_{8}{ }^{4}$.	.
			G_{4}^{1}	$G_{2}{ }^{\circ}$	$G_{1}{ }^{0}$	$G_{0}{ }^{0}$.	.
7	6	9	G_{4}^{1}	$G_{6}{ }^{2}$	$G_{8}{ }^{3}$	G_{9}^{4}	$G_{10}{ }^{5}$.
			$G_{6}{ }^{2}$	G_{4}^{1}	$G_{2}{ }^{0}$		$G_{0}{ }^{\circ}$.
8	7	14	$G_{5}{ }^{1}$	$G_{7}{ }^{2}$	$G_{9}{ }^{3}$	$G_{10}{ }^{4}$	$G_{11}{ }^{5}$	$G_{12}{ }^{6}$
			$G_{7}{ }^{2}$	$G_{5}{ }^{1}$	$G_{3}{ }^{\circ}$	$G_{2}{ }^{0}$	$G_{1}{ }^{0}$	$G_{0}{ }^{\circ}$
\vdots								

where the table shows the values of $\begin{aligned} & G_{R}^{r} \\ & G_{Q}^{q}\end{aligned}$ for any given values of p, r.
c. IX.

I recur to the case $p=5$ and the group G_{4}^{1}, which is the subject of the present note: viz. we have here a sextic curve with 5 dps , and on it a group of 4 points $G_{4}{ }^{1}$, such that every cubic through the 5 dps and through 3 points of the group, 8 points in all, passes through the remaining 1 point.
MM. Brill and Nöther show (by consideration of a rational transformation of the whole figure) that, given 2 points of the group, it is possible, and possible in 5 different ways, to determine the remaining 2 points of the group.

I remark that the 5 dps and the 4 points of the group form "an ennead" or system of the nine intersections of two cubic curves: and that the question is, given the 5 dps and 2 points on the sextic, to show how to determine on the sextic a pair of points forming with the 7 points an ennead: and to show that the number of solutions is $=5$.

We have the following "Geiser-Cotterill" theorem :
If seven of the points of an ennead are fixed, and the eighth point describes a curve of the order n passing $a_{1}, a_{2}, \ldots, a_{7}$ times through the seven points respectively, then will the ninth point describe a curve-of the order ν passing $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{7}$ times through the seven points respectively: where

$$
\begin{aligned}
& \nu=8 n-3 \Sigma a, \\
& \alpha_{1}=3 n-a_{1}-\Sigma a, \\
& \vdots \\
& \alpha_{7}=3 n-a_{7}-\Sigma a,
\end{aligned}
$$

and conversely

$$
\begin{aligned}
& n=8 \nu-3 \Sigma \alpha \\
& a_{1}=3 \nu-\alpha_{1}-\Sigma \alpha \\
& \vdots \\
& a_{7}=3 \nu-\alpha_{7}-\Sigma \alpha
\end{aligned}
$$

(Geiser, Crelle-Borchardt, t. LxviI. (1867), pp. 78-90; the complete form, as just stated, and which was obtained by Mr Cotterill, has not I believe been published): and also Geiser's theorem "the locus of the coincident eighth and ninth points is a sextic passing twice through each of the seven points."

The sextic and the curve n intersect in $6 n$ points, among which are included the seven points counting as $2 \Sigma a$ points: the number of the remaining points is $=6 n-2 \Sigma a$. Similarly, the sextic and the curve ν intersect in 6ν points, among which are included the seven points counting as $2 \Sigma \alpha$ points: the number of the remaining points is $6 \nu-2 \sum \alpha(=6 n-2 \Sigma a)$. The points in question are, it is clear, common intersections of the sextic, and the curves n, ν : viz. of the intersections of the curves n, ν, a number $6 n-2 \Sigma a,=6 \nu-2 \Sigma \alpha,=3 n+3 \nu-\Sigma a-\Sigma \alpha$ lie on the sextic.

The curves n, ν intersect in $n \nu$ points, among which are included the seven points counting $\Sigma a \alpha$ times: the number of the remaining intersections is therefore
$n \nu-\Sigma a \alpha$, but among these are included the $3 n+3 \nu-\Sigma a-\Sigma \alpha$ points on the sextic; omitting these, there remain $n \nu-3(n+\nu)-\Sigma a \alpha+\Sigma a+\Sigma \alpha$ points, or, what is the same thing, $(n-3)(\nu-3)-\Sigma(a-1)(\alpha-1)-2$ points: it is clear that these must form pairs such that, the eighth point being either point of a pair, the ninth point will be the remaining point of the pair: the number of pairs is of course

$$
\frac{1}{2}[(n-3)(\nu-3)-\Sigma(a-1)(\alpha-1)-2],
$$

and we have thus the solution of the question, given the seven points to determine the number of pairs of points on the curve n (or on the curve ν) such that each pair may form with the seven points an ennead.

In particular, if $n=6 ; a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}=2,2,2,2,2,1,1$ respectively, viz. if the curve be a sextic having 5 of the points for dps, and the remaining two for simple points, then we find $\nu=12 ; \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}, \alpha_{7}=4,4,4,4,4,5,5$ respectively, and the number of pairs is

$$
=\frac{1}{2}[3.9-5(2-1)(4-1)-2],=\frac{1}{2}(27-15-2),=5,
$$

viz. starting with the 5 dps and any 2 points of the group $G_{4}{ }^{1}$ we can, in 5 different ways, determine the remaining 2 points of the group.

In reference to the number $3 p-3$ of parameters in the curves belonging to a given value of p, it may be remarked as follows. Such a curve is rationally transformable into a curve of the order $p+1$ with $\frac{1}{2} p(p-3) \mathrm{dps}$, and therefore containing $\frac{1}{2}(p+1)(p+4),-\frac{1}{2} p(p-3),=4 p+2$ parameters. Employing an arbitrary homographic transformation to establish any assumed relations between the parameters, the number is diminished to $4 p+2-8,=4 p-6$; and again employing a rational transformation by means of adjoint curves of the order $p-2$ drawn through the dps and $p-3$ points of the curve-thereby transforming the curve into one of the same order $p+1$ and deficiency p-then, assuming that the $p-3$ parameters (or constants on which depend the positions of the $p-3$ points) can be disposed of so as to establish $p-3$ relations between the parameters and so further diminish the number by $p-3$, the required number of parameters will finally be $4 p-6-(p-3)=3 p-3$.

Cambridge, 26th October, 1874.

