615.

ON THE CONIC TORUS.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xiII. (1875), pp. 127-129.]

The equation $p+\sqrt{ }(q r)+\sqrt{ }(s t)=0$, where p, q, r, s, t are linear functions of the coordinates (x, y, z, w), and as such are connected by a linear relation, belongs to a quartic surface having a nodal conic ($p=0, q r-s t=0$) ; and four nodes (conical points), viz. these are the intersections of the line $q=0, r=0$ with the quadric surface $p^{2}-q r-s t=0$, and of the line $r=0, s=0$ with the same surface. The quartic surface has also four tropes (planes which touch the surface along a conic); viz. these are the planes $q=0, r=0, s=0, t=0$, the conic of contact or tropal conic in each plane being the intersection of the plane with the before-mentioned quadric surface $p^{2}-q r-s t=0$. The planes $q=0, r=0$, and also the conics in these planes pass through two of the nodes, say A, C; and the planes $s=0, t=0$, and also the conics in these planes pass through the remaining two nodes, say B, D; so that the relations of the surface are as is shown in fig. 1. It is to be added that $A B, B C, C D, D A$ (but not $A C$ or $B D$) are lines on the surface.

The planes $q=0, r=0$, which contain the tropal conics through A, C, are in general distinct from the planes $A B C, A D C$ which contain the line-pairs $B A, B C$ and $D A, D C$ respectively: and so also the planes $s=0, t=0$, which contain the tropal conics through B, D, are in general distinct from the planes $A B D, C B D$ which contain the line-pairs $A B, A D$ and $C B, C D$ respectively.

If, however, the identical linear relation contain only p, s, t, then the planes $q=0$, $r=0$ will be the planes $A B C, A D C$ respectively: and the tropal conics in these planes will consequently be the line-pairs $B A, B C$, and $D A, D C$ respectively. But the planes $s=0, t=0$ will continue to be distinct from the planes $A B D, C B D$: and the tropal conics in the planes $s=0, t=0$ will remain proper conics.

A surface of the last-mentioned form is

$$
m z+\sqrt{ }(x y)+\sqrt{ }\left(w^{2}-z^{2}\right)=0,
$$

viz. this has the nodal conic $z=0, x y-w^{2}=0$, the nodes $\left\{x=0, y=0,\left(m^{2}+1\right) z^{2}-w^{2}=0\right\}$, and $(z=0, w=0, x=0),(z=0, w=0, y=0)$, and the tropes $x=0, y=0, z+w=0$, $z-w=0$; but the planes $z+w=0$ and $z-w=0$ are ordinary tropal planes each touching the surface in a proper conic; the planes $x=0, y=0$ special planes each touching along a line-pair.

Fig. 1.

The equation in question, writing therein $w=1$ and $x+i y, x-i y$ in place of (x, y) respectively, is
which is derived from

$$
\begin{gathered}
\left\{\sqrt{ }\left(x^{2}+y^{2}\right)+m z\right\}^{2}=1-z^{2} \\
(x+m z)^{2}=1-z^{2}
\end{gathered}
$$

by the change of x into $\sqrt{ }\left(x^{2}+y^{2}\right)$; and the surface is consequently the torus generated by the rotation of the conic $(x+m z)^{2}=1-z^{2}$ about its diameter. Or, what is the same thing, the surface

$$
m z+\sqrt{ }(x y)+\sqrt{ }\left(w^{2}-z^{2}\right)=0,
$$

regarding therein (x, y) as circular coordinates and w as being $=1$, is a torus. The rational equation is $U=0$, where we have

$$
\begin{aligned}
U & =\left\{\left(m^{2}+1\right) z^{2}-w^{2}+x y\right\}^{2}-4 m^{2} z^{2} x y \\
& =\left\{x y+\left(1-m^{2}\right) z^{2}-w^{2}\right\}^{2}+4 m^{2} z^{2}\left(z^{2}-w^{2}\right) \\
& =x^{2} y^{2}+\left(m^{2}+1\right)^{2} z^{4}+w^{4}+\left(2-2 m^{2}\right) z^{2} x y-\left(2+2 m^{2}\right) z^{2} w^{2}-2 x y w^{2} .
\end{aligned}
$$

I find that the Hessian H of this function U contains the factor $x y+\left(1-m^{2}\right) z^{2}-w^{2}$, viz. that we have

$$
H=\left\{x y+\left(1-m^{2}\right) z^{2}-w^{2}\right\} H^{\prime},
$$

where

$$
\begin{aligned}
H^{\prime}= & x^{3} y^{3}\left(1-m^{2}\right) \\
& +x^{2} y^{2}\left\{\left(3+8 m^{2}+m^{4}\right) z^{2}+\left(-3+m^{2}\right) w^{2}\right\} \\
& +x y\left\{\left(3+11 m^{2}+9 m^{4}+m^{6}\right) z^{4}+\left(-6-12 m^{2}+6 m^{4}\right) z^{2} w^{2}+\left(3+m^{2}\right) w^{4}\right\} \\
& +\quad\left(1+m^{2}\right)\left\{\left(1-m^{2}\right) z^{2}-w^{2}\right\}\left\{\left(1+m^{2}\right) z^{2}-w^{2}\right\}^{2},
\end{aligned}
$$

giving without much difficulty

$$
\begin{aligned}
H^{\prime}= & z^{6}\left(1+m^{2}\right)^{3}\left(1-m^{2}\right) \\
& +2 z^{4}\left[\left(1+4 m^{2}+m^{4}\right) x y-\left(1-m^{4}\right) w^{2}\right]\left(1+m^{2}\right) \\
& +z^{2}\left(x y-w^{2}\right)\left[\left(1+12 m^{2}-m^{4}\right) x y-\left(1-m^{4}\right) w^{2}\right] \\
& +\left[\left(1-m^{2}\right) x y-\left(1+m^{2}\right) w^{2}\right] U
\end{aligned}
$$

say this is

$$
=z^{2} H^{\prime \prime}+\left[\left(1-m^{2}\right) x y-\left(1+m^{2}\right) w^{2}\right] U
$$

where

$$
\begin{aligned}
H^{\prime \prime}= & z^{4}\left(1+m^{2}\right)^{3}\left(1-m^{2}\right) \\
& +2 z^{2}\left(1+m^{2}\right)\left[\left(1+4 m^{2}+m^{4}\right) x y-\left(1-m^{4}\right) w^{2}\right] \\
& +\quad\left(x y-w^{2}\right)\left[\left(1+12 m^{2}-m^{4}\right) x y-\left(1-m^{4}\right) w^{2}\right]
\end{aligned}
$$

or, what is the same thing,

$$
\begin{aligned}
H^{\prime \prime}= & x^{2} y^{2}\left(1+12 m^{2}-m^{4}\right) \\
& +2 x y\left[\left(1+4 m^{2}+m^{4}\right)\left(1+m^{2}\right) z^{2}+\left(-1+6 m^{2}\right) w^{2}\right] \\
& +\quad\left(1-m^{4}\right)\left\{\left(1+m^{2}\right) z^{2}-w^{2}\right\}^{2} .
\end{aligned}
$$

It consequently appears that the complete spinode curve or intersection of the quartic surface and its Hessian, being of order $4 \times 8,=32$, breaks up into

$$
U=0, x y+\left(1-m^{2}\right) z^{2}-w^{2}=0
$$

that is,

$$
\begin{array}{lll}
\text { conic } z=0, x y-w^{2}=0 \text { twice, order } & 4 \\
\text { conic } z+w=0, x y-m^{2} w^{2}=0, \quad „ & 2 \\
\text { conic } z-w=0, x y-m^{2} w^{2}=0, \quad „ & 2
\end{array}
$$

and

$$
U=0, z^{2} H^{\prime \prime}=0
$$

that is,

$$
\begin{array}{rlr}
U=0, z^{2}=0, \text { conic } z=0, x y-w^{2}=0 \text { four times, } & " & 8 \\
\text { proper spinode curve } U=0, H^{\prime \prime}=0, & " & \frac{16}{32}
\end{array}
$$

viz. the intersection is made up of the conic $z=0, x y-w^{2}=0$ six times, the conics $z \pm w=0, x y-m^{2} w^{2}=0$ each twice, and the proper spinode curve of the order 16 .
C. IX.

