621.

ON THE NUMBER OF THE UNIVALENT RADICALS $C_n H_{2n+1}$.

[From the Philosophical Magazine, series 5, vol. III. (1877), pp. 34, 35.]

I HAVE just remarked that the determination is contained in my paper "On the Analytical Forms called Trees, &c.," British Association Report, 1875, [610]; in fact, in the form C_nH_{2n+1} , there is one carbon atom distinguished from the others by its being combined with (instead of 4, only) 3 other atoms; viz. these are 3 carbon atoms, 2 carbon atoms and 1 hydrogen atom, or else 1 carbon atom and 2 hydrogen atoms (CH_s , methyl, is an exception; but here the number is =1). The number of carbon atoms thus combined with the first-mentioned atom is the number of main branches, which is thus = 3, 2, or 1; hence we have, number of radicals C_nH_{2n+1} is =

	No.	of	carbon	root-trees	C_n	with	one	main	branch,
+	No.	of	>>	>>		with	two	main	branches,
+	No.	of	>>	"		with	thre	e mai	n branches;

and the three terms for the values n = 1 to 13 are given in Table VII. (pp. 454, 455 of this volume) of the paper referred to.

Index x , or number of	Index t, or num- ber of main	Altitude				
knots	branches	0	1	2	3	4
5	1	dama s	to totalige	1	2	1
	2			2	1	
	3			1		
	4		1			

1

9

1

3

4

Thus, if n = 5, an extract from the Table (p. 454 of this volume), is

Total ...

and the number of the radicals C_5H_{11} (isomeric amyls) is 4+3+1=8: or, what is the same thing, it is 9-1, the corner-total less the number immediately above it. The tree-forms corresponding to the numbers 1, 2, 1; 2, 1; 1 in the body of the Table are the trees 2 to 9 in the figure, p. 428 of this volume.

The numbers of the radicals $C_n H_{2n+1}$, as obtained from the Table in the manner just explained, are :---

n =	Number of radicals $C_n H_{2n+1}$.					
1	1		= 1	Methyl.		
2	1		1	Ethyl.		
3	1		1	Propyl.		
4	4		4	Butyls.		
5	9	- 1	8	Amyls.		
6	18	- 1	17	Hexyls.		
7	42	- 3	39	Heptyls.		
8	96	- 7	89	Octyls.		
9	229	- 18	211	Nonyls.		
10	549	- 42	507	Decyls.		
11	1346	- 108	1238	Undecyls.		
12	3326	-269	3057	Dodecyls.		
13	8329	- 691	7638	Tridecyls.		
	1-0-	And a low				

The question next in order, that of the determination of the number of the bivalent radicals $C_n H_{2n}$, might be solved without much difficulty.

Cambridge, November 20, 1876.

545