621.

ON THE NUMBER OF THE UNIVALENT RADICALS $\mathrm{C}_{n} \mathrm{H}_{2 n+1}$.

[From the Philosophical Magazine, series 5, vol. III. (1877), pp. 34, 35.]
I have just remarked that the determination is contained in my paper "On the Analytical Forms called Trees, \&c.," British Association Report, 1875, [610]; in fact, in the form $\mathrm{C}_{n} \mathrm{H}_{2 n+1}$, there is one carbon atom distinguished from the others by its being combined with (instead of 4 , only) 3 other atoms; viz. these are 3 carbon atoms, 2 carbon atoms and 1 hydrogen atom, or else 1 carbon atom and 2 hydrogen atoms $\left(\mathrm{CH}_{3}\right.$, methyl, is an exception; but here the number is $\left.=1\right)$. The number of carbon atoms thus combined with the first-mentioned atom is the number of main branches, which is thus $=3,2$, or 1 ; hence we have, number of radicals $\mathrm{C}_{n} \mathrm{H}_{2 n+1}$ is $=$

$$
\text { No. of carbon root-trees } \mathrm{C}_{n} \text { with one main branch, }
$$

+ No. of " with two main branches, + No. of " with three main branches ;
and the three terms for the values $n=1$ to 13 are given in Table VII. (pp. 454, 455 of this volume) of the paper referred to.

Thus, if $n=5$, an extract from the Table (p. 454 of this volume), is

and the number of the radicals $\mathrm{C}_{5} \mathrm{H}_{11}$ (isomeric amyls) is $4+3+1=8$: or, what is the same thing, it is $9-1$, the corner-total less the number immediately above it. The tree-forms corresponding to the numbers $1,2,1 ; 2,1 ; 1$ in the body of the Table are the trees 2 to 9 in the figure, p. 428 of this volume.

The numbers of the radicals $\mathrm{C}_{n} \mathrm{H}_{2 n+1}$, as obtained from the Table in the manner just explained, are :-

$n=$	Number of radicals $\mathrm{C}_{n} \mathrm{H}_{2 n+1}$.		
1	1	$=1$	Methyl.
2	1	1	Ethyl.
3	1	1	Propyl.
4	4	4	Butyls.
5	$9-1$	8	Amyls.
6	$18-1$	17	Hexyls.
7	$42-3$	39	Heptyls.
8	$96-7$	89	Octyls.
9	$229-18$	211	Nonyls.
10	$549-42$	507	Decyls.
11	1346-108	1238	Undecyls.
12	$3326-269$	3057	Dodecyls.
13	$8329-691$	7638	Tridecyls.

The question next in order, that of the determination of the number of the bivalent radicals $\mathrm{C}_{n} \mathrm{H}_{2 n}$, might be solved without much difficulty.

Cambridge, November 20, 1876.
C. IX.

