34.

NOTE ON CAPTAIN MACMAHON'S TRANSFORMATION OF THE THEORY OF INVARIANTS.

[Messenger of Mathematics, xiII. (1884), pp. 163-165.]
The whole question as is well known consists in finding the free forms of $\Omega^{-1} 0$, where

$$
\Omega=a_{0} \delta a_{1}+2 a_{1} \delta a_{2}+\ldots+i a_{i-1} \delta a_{i} ;
$$

but, as long ago noticed by me* in the Am. Math. Journal, $\Omega^{-1} 0$ is only a deformation of $V^{-1} 0$, where

$$
V=a_{0} \delta a_{1}-a_{1} \delta a_{2}+\ldots \pm a_{i-1} \delta a_{i}
$$

$\Omega^{-1} 0$ being deducible from $V^{-1} 0$ by altering the dimensions of the a elements which it contains in known numerical proportions, so that $\Omega^{-1} 0$ may be said to be $V^{-1} 0$ subjected to a known strain \dagger.

To fix the ideas let $i=3$ and call the a 's by the names a, b, c, d or, for greater simplicity, $1, b, c, d$.

Let

$$
\begin{aligned}
& b=r+s+t \\
& c=r s+r t+s t, \\
& d=r s t .
\end{aligned}
$$

Then the matrix

$$
\begin{gathered}
\begin{array}{cc}
\frac{D(b, c, d)}{D(r, s, t)}=s+t & 1 \\
s t r r & 1 \\
s t r & t r
\end{array} \\
\frac{r^{2}}{(r-s)(r-t)} \frac{s^{2}}{(s-r)(s-t)} \frac{t^{2}}{(t-r)(t-s)}, \\
\frac{D(r, s, t)}{D(b, c, d)}= \\
\frac{r}{(r-s)(r-t)} \frac{s}{(s-r)(s-t)} \frac{t}{(t-r)(t-s)}, \\
\\
\\
\\
(r-s)(r-t) \\
\frac{1}{(s-r)(s-t)} \frac{1}{(t-r)(t-s)} .
\end{gathered}
$$

so that
[* Vol. iII. of this Reprint, p. 570.]

+ In fact the numerical multipliers of the terms in Ω may be taken perfectly arbitrary without producing any effect upon the form $\Omega^{-1} 0$ than what may be represented by a strain.

Consequently

$$
V=\Sigma \frac{r^{2}-(r+s+t) r+(r s+r t+s t)}{(r-s)(r-t)} \delta_{r}=\Sigma \frac{s t}{(r-s)(r-t)} \delta_{r} .
$$

In like manner in general for $1, a_{1}, a_{2}, \ldots a_{i}$ we shall find, on writing

$$
\begin{aligned}
& \qquad a_{1}=r_{1}+r_{2}+\ldots+r_{i}, \\
& a_{2}=r_{1} r_{2}+r_{2} r_{3}+\ldots+r_{i-1} r_{i}, \\
& \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots, \\
& \\
& a_{i}=r_{1} r_{2} \ldots r_{i}, \\
& V=\delta a_{1}-a_{1} \delta a_{2}+\ldots \pm a_{i-1} \delta a_{i}=\Sigma \frac{r_{2} r_{3} \ldots r_{i}}{\left(r_{1}-r_{2}\right)\left(r_{1}-r_{3}\right) \ldots\left(r_{1}-r_{i}\right)} \delta r_{1} . \\
& \text { nce } \quad V^{-1} 0=F\left(s_{1}, s_{2}, \ldots s_{i}\right),
\end{aligned}
$$

Hence
where, in general,
and consequently the theory of invariants, which endoscopically treated in the ordinary way hinges upon symmetrical functions of the differences of a set of letters, is made to depend upon functions of the simple sums of powers commencing with the second power and ending with a power whose index is the order of any given finite quantic, but in the case of perpetuants taking in all the powers except the first.

It goes without saying that the same method applied to the constrained V will show that it is equal to $\sum \delta r_{1}$, so that V_{0}^{-1} is an arbitrary function of the differences of the r 's corresponding to that hypothesis, as we know ought to be the case.

What has been established in the foregoing investigation is a principle of correspondence whose importance as a simplifying agent recalls Ivory's use of such principle in Attractions, namely, the remarkable algebraical law that any symmetrical function of the differences of a set of i quantities is a symmetrical function of the sums of the $2 \mathrm{nd}, 3 \mathrm{rd}, \ldots, i$ th powers of another equi-numerous set.

By virtue of this principle the numerical part of the Calculus of Invariants is capable of being entirely divorced from all question of algebraical content and a Zahl-Invariant theory comes into being, in its fundamental conception analogous to the Zahl-Geometrie of Schubert.

Further remarks on this subject will be found in the Comptes Rendus de l'Institut presumably for March 31 and April 7 of this year [p. 163 above].

