102.

ON A DOUBLE INFINITE SERIES.

[From the Cambridge and Dublin Mathematical Journal, vol. vi. (1851), pp. 45-47.]

The following completely paradoxical investigation of the properties of the function I (which I have been in possession of for some years) may perhaps be found interesting from its connexion with the theories of expansion and divergent series.

Let $\Sigma_{r} \phi r$ denote the sum of the values of ϕr for all integer values of r from $-\infty$ to ∞. Then writing

$$
\begin{equation*}
u=\Sigma_{r}[n-1]^{r} x^{n-1-r} \tag{1}
\end{equation*}
$$

(where n is any number whatever), we have immediately

$$
\frac{d u}{d x}=\Sigma_{r}[n-1]^{r+1} x^{n-2-r}=\Sigma_{r}[n-1]^{r} x^{n-1-r}=u
$$

that is,

$$
\frac{d u}{d x}=u, \text { or } u=C_{n} e^{x}
$$

(the constant of integration being of course in general a function of n). Hence

$$
\begin{equation*}
C_{n} e^{x}=\Sigma_{r}[n-1]^{r} x^{n-1-r} \tag{2}
\end{equation*}
$$

or e^{x} is expanded in general in a doubly infinite necessarily divergent series of fractional powers of x, (which resolves itself however in the case of n a positive or negative integer, into the ordinary singly infinite series, the value of C_{n} in this case being immediately seen to be Γn).

The equation (2) in its general form is to be considered as a definition of the function C_{n}. We deduce from it

$$
\begin{aligned}
& \Sigma_{r}[n-1]^{r}(a x)^{n-1-r}=C_{n} e^{a x}, \\
& \Sigma_{r^{\prime}}\left[n^{\prime}-1\right]^{r^{\prime}}\left(a x^{\prime}\right)^{n-1-r^{\prime}}=C_{n^{\prime}} e^{a x^{\prime}}
\end{aligned}
$$

and also

$$
\Sigma_{k}\left[n+n^{\prime} \ldots-1\right]^{k}\left\{a\left(x+x^{\prime} \ldots\right)\right\}^{n+n^{\prime} \ldots-1-k}=C_{n+n^{\prime} \ldots .} e^{a\left(x+x^{\prime} \ldots\right)}
$$

Multiplying the first set of series, and comparing with this last,

$$
\begin{align*}
& C_{n+n^{\prime} \ldots} \Sigma_{r, r^{\prime} \ldots[}[n-1]^{r}\left[n^{\prime}-1\right]^{r^{\prime}} \ldots x^{n-1-r} x^{\prime n^{\prime}-1-r^{\prime}} \ldots \\
&=C_{n} C_{n^{\prime}} \ldots\left[n+n^{\prime} \ldots-1\right]^{k}\left(x+x^{\prime} \ldots\right)^{n+n^{\prime} \ldots-1-k} \tag{3}
\end{align*}
$$

(where r, r^{\prime} denote any positive or negative integer numbers satisfying $r+r^{\prime}+\ldots=k+1-p$, p being the number of terms in the series $\left.n, n^{\prime}, \ldots\right)$. This equation constitutes a multinomial theorem of a class analogous to that of the exponential theorem contained in the equation (2).

In particular
and if $p=2$, writing also m, n for n, n^{\prime}, and $k-1-r$ for r^{\prime},

$$
\begin{equation*}
C_{m+n} \Sigma_{r}[m-1]^{r}[n-1]^{k-1-r}=C_{m} C_{n}[m+n-1]^{k} 2^{m+n-1-k}, \tag{5}
\end{equation*}
$$

or putting $k=0$ and dividing,

$$
\begin{equation*}
C_{m} C_{n} \div C_{m+n}=\frac{1}{2^{m+n-1}} \Sigma_{r}[m-1]^{r}[n-1]^{-1-r} \tag{6}
\end{equation*}
$$

Now the series on the second side of this equation is easily seen to be convergent (at least for positive values of m, n). To determine its value write

$$
\mathbf{F}(m, n)=\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x
$$

then

$$
\mathbf{F}(m, n)=\int_{0}^{\frac{1}{2}} x^{m-1}(1-x)^{n-1} d x+\int_{0}^{\frac{1}{2}} x^{n-1}(1-x)^{m-1} d x
$$

and by successive integrations by parts, the first of these integrals is reducible to $\frac{1}{2^{m+n-1}} \Sigma_{r}[m-1]^{r}[n-1]^{-1-r}, r$ extending from -1 to $-\infty$ inclusively, and the second to $\frac{1}{2^{m+n-1}} \Sigma_{r}[m-1]^{r}[n-1]^{-1-r}, r$ extending from 0 to ∞; hence

$$
\begin{gather*}
\mathbf{F}(m, n)=\frac{1}{2^{m+n-1}} \Sigma_{r}[m-1]^{r}[n-1]^{-1-r} \\
C_{m} C_{n} \div C_{m+n}=\mathbf{F}(m, n), \ldots \ldots \ldots \ldots \ldots \tag{7}
\end{gather*}
$$

C. II.
which proves the identity of C_{m} with the function $\Gamma(m)$. \{Substituting in two of the preceding equations, we have

$$
\begin{equation*}
\Gamma n \Gamma n^{\prime} \ldots \div \Gamma\left(n+n^{\prime} \ldots\right)=\frac{1}{\left[n+n^{\prime} \ldots-1\right]^{k} p^{n+n^{\prime} \ldots-1-k}} \Sigma_{r, r^{\prime} \ldots[n-1]^{r}\left[n^{\prime}-1\right]^{r^{\prime}} \ldots} \tag{8}
\end{equation*}
$$

(where, as before, p denotes the number of terms in the series n, n^{\prime}, \ldots and $r+r^{\prime}+\ldots=k+1-p$), the first side of which equation is, it is well known, reducible to a multiple definite integral by means of a theorem of M. Dirichlet's. And

$$
\begin{equation*}
\mathbf{F}(m, n)=\frac{1}{[m+n-1]^{k} 2^{m+n-1-k}} \Sigma_{r}[m-1]^{r}[n-1]^{k-1-r} \tag{9}
\end{equation*}
$$

where r extends from $-\infty$ to $+\infty$, and k is arbitrary. By giving large negative values to this quantity, very convergent series may be obtained for the calculation of $\mathbf{F}(m, n)\}$.

