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On the motion of a turbulent vortex ring 

B. A. LUGOVTSOV (NOVOSIBIRSK) 

THE mathematical model for a description of the motion of turbulent vortex ring is constructed. 
The problem with initial conditions of special form is formulated. This problems turned out to 
be self-similar. The obtained law of the motion of vortex ring is in good agreement with the re­
sults of the experiments. The proper boundary problem for the vorticity distribution to be de­
termined is obtained. The limit case as turbulent viscousity approaches to zero is considered. 
The question about the transfer of admixture by the turbulent vortex ring is concerned. 

Skonstruowano matematyczny model slui:(!cy do opisu ruchu turbulentnego pierscienia wiro­
wego. Problem pocz(!tkowy sformulowano przy zaloi:eniu szczeg61nej postaci warunk6w po­
CZ(!tkowych. Otrzymane prawo ruchu pierscienia wirowego zgadza si~ dobrze z wynikami do­
swiadczen. Rozklad zawirowan okreslono za pomoc(! otrzymanego odpowiedniego problemu 
brzegowego. Rozwai:ono przypadek graniczny, gdy turbulentny wsp6lczynnik lepkosci d'li:Y 
dozera. Rozwai:any jest r6wniei: problem nosnika domieszki w turbulentnym pierscieniu wirowym. 

llocrpoeHa MaTeMaTWiecKaJI MO~en& cny»<all.laH: ~JIH: onHcaHIDl ~BH>KeHIDl Typ6yneHTHoro 
BHXpesoro KOJibQa. HaqaJibHaH: 3~aqa c<l>opMYJIHPOBaHa npH np~ono»<eHHH qacrHoro B~a 
HaqaJibHbiX ycnomtii. KaK oKa3anoc& 3TO aBTOMo~eJibHaH: 3a~aqa. llonyqeHHbiH 3aKOH ~BH­
»<eawr BHXpesoro KOJibQa xoporno cosna~aeT c 3KcnepHMeHTaJibHbiMH pe3yJibTaTaMH. Pacnpe­
~eneaHe 3aBHXpeHHOCTeH onpe~eneHO npH llOMOII.UI rronyqeHHOH COOTBeTCTBYJOII.leM KpaeBOH 
3~a~. PacCMOTpeH npe~eJibHbiH c.rryqaii:, KOr~a Typ6yJieHTHbiH K03<i><i>HQHeHT BH:3KOCTH 
CTpeMHTCH: K Hymo. PaccMaTpHBaeTC.fl TO>Ke 3a~aqa HOCHTeJI.fl ~o6aBKH B Typ6yJieHTHOM BHXpe­
BOM KOJibQe. 

VoRTEX or smoke rings have been well known for a long time. They can be produced for 
example by filling a box having a flexible back wall and a circular hole in the front wall 
with smoke and striking the back wall or, by ejecting a puff of smoke suddenly from the 
mouth through rounded lips. This intriguing, easily produced and observed phenomenon 
has attracted the attention of many investigators who obtained important and interesting 
results mainly within the framework of the theory of inviscid incompressible fluid. 

Some time ago a publication appeared carrying an information on attempts to make 
practical use of vortex rings at industrial enterprises to remove smoke and noxious gases 
and on the possibility of using such rings in rain-making experiments to project seeding 
material into clouds. It is obvious that the elucidation of the possibility of using vortex 
rings in a practical way requires the answer to such questions as the distance covered 
by the vortex ring, the dependence of vortex ring parameters on the way of formation, 
the amount of admixture transferr~d by the vortex ring, the losses of admixture during 
m~tion, the dependence of the amount of lost admixture on the way of filling the vortex 
ring by admixture in the moment of formation etc. It is quite evident that these questions 
should not be answered within the framework of the theory of inviscid fluid and we must 
take into account the dissipation of energy due to viscosity and the turbulent character 
of fluid motion. 

http://rcin.org.pl



760 B. A. LUGOVTSOV 

In the present work the mathematical model for a description of the motion of a tur­
bulent vortex ring and the transfer passive admixture by the turbulent vortex ring is con­
structed. The model is based on the analyses and summarizing of the results of experi­
ments carried out in a wide range of Reynolds number (from 103-107

). The size and ve­
locity of the vortex ring varied between a few centimetres and two metres (vortex ring 
radius) and between a few centimetres per second and a hundred metres per second, res­
pectively. A comparison of experimental results with theoretical conclusion allows to 
state that the motion, the structure and admixture transfer by the turbulent vortex ring 
is well described by the suggested theory. This theory is based on the supposition that 
the turbulent character of fluid motion in a vortex ring may be described by introducing 
the turbulent coefficient of viscosity. As we know such an approximation gives good re­
sults in the turbulent jets theory and in some other cases. 

Let us assume that the coefficient of turbulent viscosity v*(t) is a function of time and 
is independent of space coordinates. The value of v* (t) is defined by a characteristic scale 
of motion (size and velocity of the vortex ring) 

(1) v*(t) = aR(t)V(t), 

where the coefficient a is constant and its value should be defined in the comparison of 
the predictions of the theory with experimental data. The assumption on the independence 
of the turbulent viscosity coefficient of the space coordinates is obviously not at a suffi­
ciently long distance from the vortex ring as there, this coefficient should approach zero. 
It is evident, however, that terms with viscosity are significant only where vorticity is 
far from zero. As the vorticity in the vortex ring decreases very rapidly with the distance, 
it is hoped that the suggested assumption will yield no great error. A similar situation 
takes place in the theory of turbulent jets that was in good agreement with experiment. 
Under the condition that Reynolds numbers are sufficiently large over the greater part 
of the distance of vortex ring motion the turbulent viscosity is rather greater than the 
molecular one and the latter may be neglected. 

Using the preceding assumption, we find the following set of governing equations for 
the description of the turbulent vortex ring: 

(2) 
an Tt = rot[Sl xV]-v.(t)rot rotn, 

(3) rot V= n, divV = 0. 

These equations have a conservation law that is essential for the present consideration 
as we shall see later on. Namely, the value for vorticity impulse 

(4) P = ~ ef rxSldv 
. .JI 

is a constant of motion (independent of the time). 
For this set of governing equations it is nessesary to set up initial conditions, i.e., the 

initial distribution of vorticity defined by the way of formation of the vortex ring. How­
ever, the results of experiments provide evidence to the following. When Reynolds num­
bers are small, a laminar vortex ring with fine spiral structure is formed. The structure 
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appears to be stable and maintains itself practically up to the complete stop of the vortex 
ring. In thts case vorticity distribution is defined essentially by the initial field of velocity, 
the form of the nozzle which produces the vortex ring, a law of plunger motion, etc. This 
picture of flow field takes place when Reynolds number (defined by the radius and velo­
city of the vortex ring) ;$ 103

• 

In the range of Reynolds numbers 103-104 the spiral structure becomes unstable and 
soon after the formation is destroyed. After all, from Reynolds number 104 and larger, 
the motion of fluid in the vortex ring becomes turbulent. On account of instability the 
spiral structure is immediately destroyed after vortex ring formation. The turbulent mix­
ing of sheet vorticity takes place and, consequently, a vortex core is formed. In this case, 
as experiment proves, vorticity distribution is not dependent or depends very little on the 
details of the way of vortex ring formation. After the vortex ring covers the distance of 
some hole diameters which serve to form it, some vorticity distribution independent of 
the way of vortex ring formation is produced. To be more exact, average motion in a tur­
bulent vortex ring in the first approximation is defined only by the size and velocity of 
the vortex ring and some constant the value of wich contains all the information on the 
way of vortex ring formation. 

All this suggests that vorticity distribution in a turbulent vortex ring is described by 
a self-similar solution of governing equations. According to this a problem with the follow­
ing initial conditions of special form is formulated : 

(5) nco, r) = -PoX Vb(r), 

where P0 is the vortex impulse, assigned to fluid density, b(r)- delta-function. 
Henceforth, the formulated problem appears to be self-similar, as the only dimension­

al parameter is the value of vortex impulse with the dimension [P0 ] = L4 /T. From the 
analysis of dimensions it appears that the functions to be found, for which it is conve­
nient to take vorticity Q and stream function lJI and the coefficient of turbulent viscosity 
v*(t), should have the following form [1]: 

1 p
0
3t4 p 112 

Q = 1 w(x, y), lJI = (i/4--lp(X, y), v*(t) = A--1~12"• 
(6) 

z r 
X = p

0
tt4 1tt4 ' Y = p

0
tt4 1tt4 ' 

where.?. is a constant the value of which should be defined from the experiment. Self-simi­
larity specifies the law of vortex ring motion. From (6) we know that the radius of the 
vortex ring R(t) and the distance L(t) covered by the vortex ring is 

(7) R(t) = Polt4 rtt4Yo(A), L(t) = Pott4 t1f4 Xo(.?.), 

where x0 (.?.) and y 0 (.?.) are coordinates of the point, where vorticity w (x, y) have a maxi­
mum. From (7) we find that 

(8) R(t) = a.L(t), 

where a.(.?.) = ~:~~~ , i.e., the radius of the vortex ring increases in a linear way with the 

distance covered by the vortex ring. 
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In comparison with experiment the formulas (7) take the following form [1]: 

(9) l(t) = ~0 r (, + 
4;~0 r· _, J. 

(10) R(t) = R0 + cxl(t), 

where R0 and U 0 are initial values of the radius and the velocity of vortex ring for which 
it takes the values these parameters at some distance ahead of exit hole (some ten hole 
diameters) this point accepts for origin for time and distance l(t). 

This is associated with the fact that just after vortex ring formation vorticity distribu­
tion distinguishes itself from self-similar one and some time is needed to produce self­
similar distribution. 

The linear increase of the vortex ring radius distance is in good agreement with the 
results of experiments. The value cx of measurements in experiments appears to be very 
small (about I0- 2-I0- 3

). It is a one-valued function of A which depends on the way and 
the conditions of vortex ring formation and, as it will be seen further, completely spe­
cifies the structure of vorticity distribution in the vortex ring. 

According to self-similar law of motion (9) the vortex ring covers an infinite distance, 
while experiments point at the opposite. In reality, the self-similar law of motion is valid 
until turbulent viscosity is rather larger than molecular viscosity. When the motion finishes 
the influence of molecular viscosity becomes essential and the self-similarity is destroyed. 
However, at a considerable part of the distance covered by the vortex ring the formulas 
(9) and ( 1 0) agree well with experimental results. As Reynolds number increases this stage 
of motion increases as well. 

For specification of vorticity and stream function we have the following set of equa­
tions (in the cylindrical system of coordinates, axis x is the axis of symmetry, axis y is 
the distance from the symmetry axis)J 

(11) 

(12) 
1 

"Pxx + 'ljJyy - Y 'ljJy = - yw 

with the boundary conditions 

(13) w ~ 0, 1p ~ 0 as x 2 + y 2 ~ oo, w = 1p = 0 as y = 0 

and the condition of normalization which follows from the conservation law of vortex 
impulse 

00 00 

(14) n J J wy2dydx = 1. 
-00 0 

The small parameter A at main derivatives in Eq. (11) is the principal source of difficul­
ties which arise when attempting to investigate both analytically and numerically the prob­
lem under consideration. 

In connection with this it is natural to study the limit case that corresponds to the 
approach to zero of turbulent viscosity (vanishing viscosity). It this limit solution is found, 
then, it will provide a good base for the numerical solution of the problem at finite A.. 
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Let us substitute the variables, assuming 

1 
'YJ = J:i !TY, 

(15) 

This substitution, except for spreading, corresponds to the pass into the coordinate system 
associated with the vortex ring. 

Equation (11) will be as follows: 

(16) 
_ _ 1 _ 1 _ 1 _ 1 _ _ [ - a ( w ) _ a ( w )] 
wr:~+w + - w - -w+ - ~wr: + -- 'Y)W +w = f.l 1p · · - -111 - - --

.,t; 1111 'YJ 11 'YJ2 4 .. 4 " 11 a; 'YJ n ar; 1 r; . 

and Eq. (12) and the normalization (14) will have the same form with the substitution 
x--+ ~ and y ~ r;. The boundary conditions for w remain the same while for 1jJ at infinity 
we have 

(17) 
1 -

-1pc,--+ 0 as 
'Y) 

Value ~0 is defined by the requirement that the maximum of w is to lie on the line of 

~ = 0. 
The approximate solution obtained in the process of investigating the formulated 

problem [2] suggests in new variables the solution at A--+ 0 (or f.l--+ oo accordingly A--+ 0) 
approaches at some restricted limit solution. With such a suggestion from Eq. (16) it follows 
that in the limit f.l--+ oo we have 

(18) 
w - --

- = Q = Q(tfl) 
'Y) 

where, however, the form of functional dependence Q(tfl) remains indefinite. 

In the considered flow the streamline tp = 0 divides the region into two parts: exter­
nal, in which streamlines run from infinity to infinity and internal (the atmosphere of the 
vortex ring) where streamlines are closed. Owing to the boundary condition on infinity 

for w, from Eq. (18) it follows that in the external region in limit we have ti = 0. The 

form ti(¥) in the internal region is to be defined. 
An analogous problem was considered in paper [3] for the steady laminar flow of vis­

cous fluid with closed streamlines at large Reynolds number (Reynolds number approach 
to infinity). Keeping in line with the idea of this work, let us integrate Eq. (16) in a re­
gion with the boundary defined by some closed streamline at the finite value dl. The term 
on the right-hand side vanishes identically, as this can easily be verified and, consequently, 
at any f.l we have the exact integral condition 

to be satisfied for all closed streamlines. Here, dl is a line element, n - the unit outward 
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normal to the streamline. Now. making the limit operation t-t ~ oo and taking into account 

that at this we have Q ~ Q(P), we find from Eq. (19) 

(20) 
_:_dQ 1- 3 - --

P('l') dlfi = -2 re 'l') + 4 se 'l')Q('P), 

where 

is the circulation round the streamline. Here, the integrals are taken over the region de­
fined by the closed streamline. 

Thus, in the limit t-t ~ oo the problem of finding the vortex ring structure reduces to 
that of matching the irrotational (in the external region) and vortex (in the internal region) 
flow of inviscid fluid under the condition of continuity of lJ' and V'l' at the boundary [4] 
function form Q('l') is defined by ordinary (for variable 'l') differential Eq. (20). 

It can be proved that the assumption of restricting the limit solution entails its \con­
tinuity. Therefore, the boundary condition Q(O) = 0 is to be added to Eq. (20). A numer­
ical solution of the formulated problem (i.e., the solution in the limit case t-t ~ oo) ·is 
much simpler than the initial problem. The results of the numerical solution are in good 
agreement with experimental data. 

The question about the transfer of the passive admixture by the turbulent vortex ring 
can be considered by the analogy with the foregoing [2]. The ability of the vortex ring to 
transfer admixture is due to the mass of fluid carried along with the vortex ring. Under 
condition that the flow is laminar the passive admixture contained in this mass of fluid 
in not lost practically, without taking into account the slow process of molecular diffu­
sion. With turbulent motion losses of admixture rise sharply due to turbulent diffusion 
but some admixture is transferred by the vortex ring over a great distance. 

The consideration of the process of passive admixture transfer is based on the assump­
tion that the turbulent diffusion can be described by introducing the turbulent coefficient 
of diffusion D*(t). Then, basing on known experimental results of turbulent jets where 
it was found that the coefficient of turbulent diffusion coincided with the coefficient of 
turbulent viscosity with a factor on the order of unity, it is assumed that 

D*(t) = yv*(t), 

where y is constant on the order of unity. 
Neglecting molecular diffusion we have the following equation that describes average 

distribution of passive admixture in the turbulent vortex ring [2]: 

ac 
(21) Tt +(vV)C = yv*(t)L1C, 

where C represents admixture concentration. Velocity field defined the coefficients in Eq· 
(21) is to be found from problem solution on vortex ring motion formulated above. 

Equation (21) has the evident law of conservation: the complete amount of admix­
ture Q in the whole volume 

(22) Q = J Cdv 

is independent of time. 
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Experiment shows that the distribution of admixture concentration, like the distri­
bution of vorticity, rather quickly approaches to some distribution independent of initial 
conditions; some amount of admixture is lost quickly and forms a characteristic train 
(smoke in particular) streching beyond the vortex ring. The admixture placed near the 
boundary of the fluid volume which moves together with the vortex ring loses the most 
quickly. This explains the fact that very quickly after the vortex ring is produced by the 
box filled with smoke we see a smoke ring (toroidal region of great concentration admix­
ture, approximately coinciding with the region of maximum vorticity) though, in fact, 
together with the vortex ring the fluid volume moves in the form of an oblate spheroid. 

Let us assume that the limit concentration distribution of admixture like vorticity 
distribution, describes the self-similar solution of Eq. (21). Then, we have 

(22') 
Q 

C = Po3t4 t3!4 c(x' y) 

and for specification of concentration of admixture we have the following equation: 

( 
I) 1 I 3 I 

(23) y). Cxx+cyy+ -ycy +4 xcx+4ycy+ 4c = Y(1pyCx-1fJxCy) 

with the boundary conditions 

(24) c--+ 0 as 

and normalization 

(25) 2n J J cydxdy = I. 
-00 0 

This problem may be solved after finding a solution to the problem of vortex ring motion. 
At early stages of vortex ring motion when the self-similar distribution of admixture 

is not yet produced, the admixture losses are described by the following formula: 

Q - Q (J.)+ Q* 
- 0 ( /(t) )n ' 

1+!X--
Ro 

(26) 

where Q0 (A) and Q* are constants, n is a constant defined from the experiment (that giv­
es n ~ 14). The value Q0 is defined by the self-similar distribution of the admixture. 
The value Q* depends on the way of filling the vortex ring at the moment of its formation. 
In particular, if one fills the vortex ring at the moment of formation so that the admix­
ture gets only into the core of the vortex ring, then, the losses of admixture decrease 
essentiaJly. 
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