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Steady high subsonic plane compressible flows 
Finite elements solution by streamline perturbation 

S. F. SHEN and H. C. CHEN (NEW YORK) 

Two FINITE element programs for two-dimensional subsonic compressible flows have been de­
veloped which are shown to be rapid, accurate, and flexible up to the transonic regime, including 
the prediction of locally supersonic pockets. The computation domain uses the incompressible 
velocity potential and stream function as Cartesian coordinates. A thin-airfoil type expansion 
is carried out, effectively to look for the solution as a perturbation of the incompressible stream­
line pattern. One of the two programs is for the stream function with 6-node quadratic trian­
gular elements, and the other for the velocity potential with 9-parameter cubic triangular ele­
ments. Test cases include the Emmons nozzle, the circular cylinder, the 10% ellipse, and several 
symmetrical airfoils, all carried to the transonic regime. As the sonic condition is locally ap­
proached, the velocity poten~ial program is to be preferred because of the necessary iteration for 
the local Mach number, and the more accurate veiocity field from the cubic element used. The 
same programs can be used for other problems as long as the incompressible field is known or 
can be constructed, with no restriction to shape or thickness. 

Przygotowano dwa programy rozwi<}zywania dwuwymiarowych zagadnieri scisliwych przeply­
w6w poddiwi~kowych metod'l element6w skoriczonych. Jak si~ okazato programy te S<} szybkie, 
doktadne i mog<} bye z powodzeniem wykorzystane az do obszar6w naddiwi~kowych, z prze­
widzeniem lokalnie naddiwi~kowych ,kieszeni" wl'lcznie. W trakcie obliczeri jako nowe wsp6l­
rz~dne kartezjariskie przyj~to niescisliwy potencjal pr~dkosci i funkcj~ pr<}du. Dokonano roz­
wini~ia rozwi<}zania tak jak dla cienkiego profilu lotniczego. Efektywnie poszukiwano rozwi<}­
zania, stosuj<}c perturbacj~ niescisliwego modelu linii pr<!du. Jeden z dw6ch program6w sluzy 
do rozwi<}zywania r6wnania na funkcj~ pr(!du przy przyj~ciu element6w kwadratowo-trojk'lt­
nych o szesciu w~zlach kazdy. Program drugi rozwi<}zuje r6wnanie dla potencjalu pr~dkosci 
z szescienno-tr6jk<}tnymi elementami o dziewi~iu parametrach kazdy. Jako przypadki testowe 
rozpatrzono dysz~ Emmonsa, walec kolowy, 10% elips~ i wiele symetrycznych profili lotniczych, 
przy czym wszystkie obliczenia prowadzono az do zakresu naddiwi~kowego. Przy zbli:laniu 
si~ lokalnie do pr~dkosci diwi~ku, lepszy, jak si~ okazuje, jest program na potencjal prc:dkosci 
z uwagi na stosowanie niezbc:dnej iteracji lokalnej liczby Macha i uzyskiwanie doktadniejszego 
pola pr~kosci dzi~ki uzyciu elementu szesciennego. Ten sam program moi:na z powodzeniem 
wykorzystac do obliczenia numerycznego innych zagadnieri, o ile obszar niescisliwy jest znany 
lub latwy do skonstruowania bez jakichkolwiek ograniczeri jego ksztahu lub grubosci. 

l13fOTOBJiellbl )l;Be . rrpJrpaMMbl pernel{Jnl ,n:ByxMepHbiX 3a,n:aq C)f{HMaeMbiX )l;03BYJ<OBbiX Te­
l!el{HH MeTo.n;oM Koael!HbiX :me.,~eaToa. Ka1< oKa3anach 3TH nporpaMMbi 6biCTpbi, TOl!llbi H Mo­
rYT 6biTb c ycnexoM HCrrOJih30Baahi arrJIOTh .n:o caepx3BYI<OBbiX o6nacreif c npe.n;aH.n;eaHeM 
JIOI<aJibllO csepx3BYI<OBbiX ,KapMaaoa" BI<JIIOliHTeJihHO. B np::n~ecce pacl!eToB I<aJ< llOBbie 
)l;ei<apTOBble I<OOp)l;HI-{aTbl rrpHI{HTbl l{eC)f{HMaeMbiH llOTell~HaJI CI<OpOCTH H <l>Ylli<~R: TOI<a. 
IlpJae.n:eao pa3nomeaHe perneaHR: I<al< ,n:JIR: TO!ll<oro asHa~HOllllOro npo<t>HJIH. 3<l><t>ei<THBllO 
HI..l.\eTCH perneaHe rrpHMe!lHH B03MYI..l.\eHHe aecmHMaeMoif Mo.n:enH JIHllHH TOJ<a. O.n:aa H3 .n:syx 
nporpaMM CJIY)f{HT )l;JIH perneaiDI ypaaaellHR: )l;JIH <l>Ylli<L\HH TOI<a, rrpH rrpH!lHTHH I<Ba,n:paTI{O­
TpeyroJlbHbiX 3JieMellTOB c 6 y3naMH I<am.n;hiH. BTopa.H nporpaMMa pernaeT ypaaaea1:1e .n:nR: 
llOTeH~aJia CI<OpOCTH C I<y6Hl!eCI<O-TpeyrOJibl{biMH 3JieMel{TaMH C 9 rrapaMeTpaMH I<am,n:hiH. 
Kai< Tecroabie cnyqaif paccMoTpeabi conno 3MMOHca, I<pyrosoif ~JIHH.n;p, 10% 3JIJIHITC 
H MHOrO CHMMeTpHt!HbiX aBHa~HOllllbiX rrp::><l>HJieH, rrpHtreM BCe pacl!eTbl rrpOBe)l;el{bl BllJIOTb 
.0:0 CBepX3BYJ<OBOH o6JiaCTH. IJpH c6JIH)f{el{HH JIOHaJibHO I< CKOpOCTH 3Byi<a nyqrneif rrporpaM­
MOH, I<al< OI<a3biBaeTCH, HBJIHeTCH rrpJrpaMMa )l;JIH llOTel{[\HaJia CI<OpOCTll H3-3a rrpliMellel{HR: 
aeo6xo,n:HMoif noi<anLaoif mepa~HH l!Hcna Maxa H nonytreaiDI 6onee TOl!lloro nonn cKopocTH 
6naro.n:apn HCITOJlb30Ba!lHIO I<y6wiecJ<oro :meMeHTa. 3Ty caMyiO nporpaMMY Momao c ycnexoM 
JICITOJlb30BaTb )l;JIH liHCJiel{l{OfO pactreTa .n;pyrHX 3a.n;atr, eCJIH aecmHMaeMaH 06JiaCTh H3BeCTHa 
HJIH Jieri<O ee MO)f{l{O llOCTpOHTh 6e3 llHI<ai<HX o~pallHl!el{HH Ha ee <t>opMy HJIH TOJII..l.\HHY · 
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1. Introduction 

RECENT interest by the aircraft industry plus the increasing capacity of the high speed 
computers have led to great progress in the numerical computation of transonic flows. 
A number of highly effective finite-difference schemes [1 , 2, 3, 4] are well established, 
especially for the two-dimensional airfoil problem. Some of them can handle even the 
difficult task of locating the weak shock springing from the body surface. Another approach 
via Dorodnitzyn's multi-strip method of integral relations [4, 5, 6, 7, 8] also produced 
several interesting case studies with encouraging results. The hope is to economize the 
computation by a decrease of the number of the unknowns. The method of integral rela­
tions may be regarded as basically of the same nature as the semi-discrete version of the 
finite element method, both using interpolation for the unknown in one of the coordinates 
and controlling the accuracy in some average integral sense. To achieve further economy, 
then, it seems logical that the finite element method shoud be explored for similar appli­
cations. 

The finite element method, in theory and in practice, performs best for linear partial 
differential equations of the elliptic type, for which a variational principle exists and is 
easy to implement numerically. Highly popular, with justification, in the treatment of stuctu­
res of complex geometry in solid mechanics, it has yet to receive serious consideration from 
aerodynamicists. No doubt the reason is partly the advanced state of other numerical 
methods already tested and at our disposal. Although its potential of savings in the com­
puting cost may be luring, the feasibility should first be proved. For compressible flows, 
up to the transonic regime, the governing equation is highly non-linear and may not re­
main elliptic everywhere. Whenever a shock wave appears, its unknown location and t h~ 

discontinuity of the solution cannot be conveniently described by simple interpolation. 
Even restricted to shockless flows, a variational principle may exist but is of little conso­
lation: The functional involves a highly transcendental integrand, and previous attempts 
in the test case of the flow over a circular cylinder, starting with WANG [9] and more re­
cently by GREENSPAN and JAIN [10] and RASMUSSEN [11], are all heavily time-consuming. 
Whenever the critical Mach number is exceeded and locally supersonic flow takes place, 
any numerical procedure, following the variational principle, trying to get at the solu­
tion as that of a boundary value problem can further be challenged with good reason. 

It is apparent, as we have stressed in a review [12] earlier, that forethought and analy­
sis must first be given to the peculiarities of the flow in question, in order to reach a work­
able and efficient finite element formulation. The governing equation may be cast in 
different forms, the resulting non-linear algebraic systems, from the variational principle 
or otherwise, must be solved by iteration, and the success or ease in arriving at the answer 
may greatly vary. An obviously straightforward approach to the compressible flow prob­
lem, for example, is to write the governing equations for the streamfunction or the ve­
locity potential as a Poisson equation, equivalent to an incompressjble flow with a spa­
tial distribution of sources in which all terms due to compressibility are dumped. Regard­
ing the source terms as known in an iteration process, the variational principle and its 
finite element treatment for the Poisson equation is simple and straightforward. Such 
a scheme has been adopted by many investigators [13, 14, 15, 16]. As the numerical 
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STEADY HIGH SUBSONIC PLANE COMPRESSIBLE FLOWS 883 

counterpart of the Rayleigh-Janzen expansion, it is quite satisfactory for low Mach 
number flows, but most definitely and rapidly deteriorates as the Mach number goes up. 
The replacement of the operator by a Laplacian is evidently too crude, and in regions 
of supersonic flow not even qualitatively correct. 

Our studies in the finite element method for high subsonic flows therefore give consid­
derable attention to rewriting the differential equation before the formal aspects of re­
ducing it to an algebraic system are carried out. In one method, the operator is approxi­
mated in each element as that for small perturbations about a local uniform flow, i.e., 
a locally defined Prandti-Glauert approximation. The finite element procedure is carried 
out in the physical plane for each element and then the elements are properly assembled. 
This investigation and some of its applications have been reported by SHEN and 
HABASHI [17, 18]. 

We describe in the following a second method, which is built upon the choice of the 
incompressible velocity potential and streamfunction, for the same flow under considera­
tion, as the coordinates in the working plane where computations are to be made. The 
very same coordinate system was used by EMMONS in his pioneering numerical calculation 
of the nozzle flow [19], to map the computation domain into a rectangular strip. An in­
teresting feature turns out to be that all streamlines, for whatever body shape, are nearly 
horizontal in the working plane. It immediately suggests a perturbation scheme, in the 
nature of a "thin-airfoil" approximation (but in the working plane and with no restriction 
on the actual thickness of the body). Hence the method is referred to as "streamline per­
turbation". The finite element programs are then developed, and found to be highly effi­
cient, as well as flexible for easy modification to treat many'other problems. More det~ils 
can be found in CHEN [16]. 

As regards shock-fitting, in spite of the apparent success reported by CHAN and BRAs­
HEARS [35], we have not yet developed an effective technique to our own satisfaction. 

2. Formulation of the problem 

2.1. Governing equations and the boundary conditions 

For two-dimensi ·mal steady· irrotational flow of a compressible fluid, the governing 
equation may be written either in terms of the stream function "P or the velocity potentiall/J. 
In Cartesian coordinates (x, y), we have 

(2.1) 

and alternatively, 

(2.2) 

where (! is the density, related to the velocity field through the relation 

(2.3) _g_ = [ 1 - I=!_ (_!!_)2])1~ 1' 
(!o 2 c 0 

http://rcin.org.pl



884 S. F. SiiEN AND H. C. CHEN 

y being the ratio of specific heats, eo and e0 denoting, respectively, the reference density 
and speed, both evaluated at the stagnation condition, and q being the local speed defined 

(2.4) 

It will be assumed that the incompressible case for the flow in question has been obtained 
by other means, in terms of a complex potential w(z), say, 

w(z) = ~(x, y)+ir;(x, y), 

z = x+iy. 
(2.5) 

Clearly ~ is the incompressible velocity potential and 'YJ the incompressible stream function, 
in the usual convention. As a consequence, the velocity field (ui, vi) and the local speed Q 
follows 

ui = ~X = 'Y}y' V; = ~y = - 'YJx' 
Q = (uf +vf)lf2 = (~i + ~;}112 = (r;i + 'YJ;)lf2. 

(2.6) 

Following Emmons' treatment of the nozzle problem [19], we introduce~' 17 as the new 
coordinates. The body contour is thus reduced to a line segment along the liner; = const. 
In the "working plane" with the ~, r;-coordinates, the velocity components u, v along 
the x- and y-axis directions in the physical plane are defined by 

u (!o ( - =- V(lp;+Ui1p11) = Uil/J;-V;l/J 11 , 
eo (! 

(2.7) 
v (!o 

- = -- (uitp;-Vi1p11) = vil/J;+uil/>11 , 
eo (! 

so that the local speed q ( = V u2 + v 2 
) can be evaluated as 

(2.8) _!!_ = ~eo( "Pf + 1p;)112 = eo( 4>~ +4>~)lf2. 
Q (! 

The governing equations, Eq. (2.1) and Eq. (2.2), become respectively 

(2.9) 

and 

(2.10) 

The non-linearity of Eq. (2.9) and (2.10) arises from the density e, which must be obtained 
through Eqs. (2.3) and (2.8). As already mentioned, the incompressible solution is taken 
as given, therefore Q as a function of ~ and 'YJ is known. 

For the boundary conditions, let us illustrate by means of two typical cases: 
i) The internal flow through a nozzle (Fig. I). 
Let the shape of the nozzle be given, together with the suitable entrance and exit condi­

tions, so that the incompressible potential flow can be prescribed on and within the con­
tour ABCD. In the working plane, the domain ABCD becomes a rectangular strip if AD 
and BC are chosen to be equipotentiallines in the incompressible case. The constant val-
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FIG. 1. Physical and working planes; nozzle. 

ues of 'YJ along AB and DC are known, but conditions along AD and BC for the compres­
sible case have to be specified with care: both are required if the entrance and exit flows 
are subsonic, but the conditions along BC must be left free when the flow exits super­
sonically. Furthermore, for a nozzle of finite length, the conditions cannot be arbitrarily 
assigned but should be reckoned together with the reservoirs, for instance, both upstream 
and downstream. In the example calculated by EMMONS [I 9], the contours AB and CD 
are portions of hyperbolas extending to infinity, described by 

(2.11) y 2 -x2 tan2 'Y)w = sin2 'Y)w 

for which the complex potential is 

(2.12) w = ~+i'Y) = sinh- 1z. 

For subcritical nozzle flows, it is appropriate to assume the asymptotic incompressible 
field for x or ~ large, 

(2.13) 1p = k'Y), 

where k = "Pwi'YJw, "Pw being the mass flux. If the velocity potential is used as the dependent 
variable instead of 1p, the analogous condition along AD and BC is 

(2.13') 4> = k~. 

ii) The external flow . of uniform stream over a body (Fig. 2). 

We have sketched the flow over a circular cylinder of unit radius as a typical body, 
and the incompressible potential solution in question is, for a free stream velocity parallel 
to the x-axis, 

(2.14) 
l: • 1 

w = "'+ l'Y) = z + -. z 

Because of symmetry, only the upper half of both the physical and working planes need 

to be drawn. Clearly, :~ = 0 along ABCDE. On the outer contour EFGA the condi­

tions again may be complicated because of the possibility of shocks in the domain. Con­
sider for simplicity only subsonic uniform stream of q = U, e = (! 00 at infinity. Then we 
may again assign 

(2.15) 
(!oo U 

1p=- -'Y) 
(!o Co 

or 
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FIG. 2. Physical and working planes; circular cylinder. 

along EFGA, by choosing the contour to lie sufficiently far from the body (BCD). Better 
accuracy could be achieved by prescribing the appropriate asymptotic solution along 
EFGA. Its effects will be shown later. 

2.2. The streamline perturbation approximation 

The implication of the conditions (Eq. (2.13) or (2.15)) is none other than that the in­
compressible ·flow pattern should again prevail at large distances. In the working ~, 1}-plane, 
not only the boundaries are rectified but the problem may be regarded as that of a channel 
between parallel walls, governed by Eq. (2.9) or (2.10), where the physical body enters 
only through effects of the incompressible velocity field in the density term. The stream­
lines are therefore expected to be approximately horizontal everywhere, and a thin­
airfoil type of approximation immediately suggests itself. Both EMMONS [19] and MEKSYN (20] 
have already proceeded this way. 

I 

___ j_ __ 
FIG. 3. Streamline perturbation due to compressibility. 

l) - compressible streamline, 2) ---incompressible streamline. 
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Lets be the angle between the streamlines with and without the compressibility effects, 
evaluated in the physical plane, as shown in the sketch of Fig. 3. Using Eq. (2.7), we readily 
find 

(2.16) tans = - "P; 
"PTJ 

and shall assume lsl ~ 1. Now Eq. (2.9) can be written as 

(2.17) 

where 

(2.18) 

A 1 1Jl;;+B1 'lfJ;11 +C1 1p1111 +D1 = 0, 

A1 = 'lfJf+(I -M 2)'1fJ~ 

B1 = 2M 2 '1fJ;1Jl11 , 

cl = (1-M 2)'1fJf +"P~, 

D M2( 2 2) ( Q; QT/) 
1 = 'lfJ;+"PTJ "Pt;Q+"PTJQ. 

Substitution of Eq. (2.16) into Eq. (2.17) and deletion of terms of the order of 0( s2
) 

and smaller leads to 

(2.19) 

which agrees with EMMONS' approximate equation [19] to the order of O(s). Here M 
is the local Mach number, and the body shape enters in the incompressible speed ratio Q. 

In a similar manner, Eq. (2.10) can be rewritten as 

(2.20) 

where 

(2.21) 

It is easily verified that 

(2.16') 

A 2 =(1-M 2)</>[+</>~, 

B2 = -2M 2</>;</> 11 , 

cl= <Pl+O-M 2)</>~, 

D2 = -M 2 (<J>( +</>;)( q,,Q,~<J>"Q"). 

</>; tans=--
</>, 

and omitting terms of O(t: 2) in Eq. (2.20) leads to 

(2.22) (l-M 2)</>"+4> •• -M' ( q,,Q,~<J>"Q") = 0 

as the alternative to Eq. (2.19). MEKSYN's first approximation [20] results from omitting 
the term <f>TJQ11 , of O(s), in Eq. (2.22). 
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Futher calculations need an explicit expression for the local Mach number M. 
of tp, we have from Bernoulli's equation, 

(2.23) M 1 + y-1 M2- 2<y-1)- = ____g!!__ = Q(tp2+m2)1t2 
( ) 

}'+1 

2 (!oCo ; TYJ 

hence, for lel ~ 1, 

(2.23') 

In terms of 4>, a simpler relation holds 

(2.24) M ( 1 + .r..; 1 
M2)-+ = :. = Q(</1~ +</1~)112, 

hence, for lel ~ 1. 

(2.24') M(1 + r;1 M2t~- = Q</1; 

In terms 

We shall refer to the pair of Eqs. (2.19) and (2.22) as the stream function formulation, 
or tp-form for brevity, and the pair of Eqs. (2.21) and (2.23') as the velocity potential 
formulation, or 4>-form for brevity. Either pair can be used. The tp-form takes Dirichlet 
boundary conditions on the solid body, but requires careful handling of Eq. (2.22) in the 
transonic region because of the choking phenomenon associated with the maximum of eq 
vs. M. Experience shows that it works well for numerical solution so long as in all iterations 
the local Mach number never exceeds unity. The 4>-form takes Neumann boundary con­
ditions on the solid body. It turns out to be preferable in numerical calculations when 
locally supersonic pockets appear, as the monotonic nature of the variation of q vs. M 
in Eq. (2.23') can be iterated in a straightforward manner regardless of whether M ~ 1. 
In fact, the simplicity of Eq. (2.23) yields the explicit expression of M2 , which will be 
exploited later. 

3. The finite element treatment 

The finite element method is basically to discretize the solution of a field problem 
through local approximations and suitable integral constraints. The latter are preferably 
obtained by recasting the governing differential equation into a variational form. For the 
two-dimensional compressible potential flows in question, the variational principles due 
to Bateman are wellknown; see, e.g., the review by RASMUSSEN [21]. In the form ofEqs. (2.1) 
and (2.2), since (! = e(q2), the operators are in fact ,potential" and the following varia­
tional statements apply: 

a) For Eq. (2.1) 

(3.1) 
~/1 (tp) = ~ f (f __!__ dq2

) dA- f __!__ ~tp ~~ ds 
A e M e . 

= 0; 
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b) For Eq. (2.2) 

lJ/2(4>) = lJ J (J edq2) dA - f efl</J ~~ ds 
A oA (3.2) 

= 0, 

where A is the domain of interest, oA its boundary, ds the arc length along oA, and n the 
outward normal direction. These can be constructed following V AINBERG [22] and have 
already been pointed out by GELD ER [23]. The variations are to be taken on 1p and 4>, 
respectively. Owing to the transcendental nature of the integrand in the area integrals, 
the implementation for computation is rather inconvenient. A straightforward iterative 
scheme would be to treat e as a given field quantity and subdue it in successive approxi­
mation, in the manner of TA YLOR and SHARMAN [24] fifty years ago. It is already better 
that the Poisson iteration mentioned in the "Introduction". An even more successful 
way of iteration has been reported by SHEN and HABASHI [16]. For working with Eq. (2.9) 
or (2.10) in~, 17-coordinates, obviously Eqs. (3.1) and (2.21) are still valid with the prop­
er interpretation. 

A direct approach by the Galerkin procedure mathematically amounts to the construc­
tion of a week solution. Briefly, consider Eqs. (2.19) and (2.21), both being of the type 

(3.3) (K1F,Jx+(K2Fy)y+K3 = 0, 

where K 1 , K2 , and K 3 are functions ofF, Fx, Fn x,y. We seek an approximate solution 
F, K1 , K2 , K3 as 

(3.4) F = Ni(x, y)Fh K1 = Ni(x, y)K1 h etc., 

in term of chosen known base functions Ni(x, y), and unknown constant parameters 
Fi, K1 h K2 h K3 i. The summation convention is of course implied, and the number of 
the index i depends upon the desired accuracy. After proceeding in the usual way, a system 
of algebraic equations is obtained 

(3.5) J (KlNixFx-i-K2NiyFy-K3N;}dA- f Ni(KlFxfx+K2Fyfy}ds = 0, 
A oA 

where Fx = N.ixFJ, Fy = }{_jyFj, lx and ly are the direction cosines of the outward normal 
at ds along the contour oA. Eq. (3.5) may also be regar:ded as the result of the variational 
formulation in solving Eq. (3.3) iteratively, by evaluating K 1 , K 2 and K 3 from the last 
iteration of F. Hence the boundary integral of Eq. (3.5) should be calculated from the 
imposed values of F, Fx and Fy. 

The essential feature of the finite element method lies in subdividing the domain A 
into finite-sized elements and employing localized base functions Ni(x, y) that vanish 
except in the immediate neighbouring elements sharing a common "node". Eq. (3.5) 
is then applied to each element first, and the results are assembled. For general discussions 
on the choice of Ni, the assembling process and other details, see the books by ZIENKIEWICZ 
[25], GALLAGHER [26), and STRANG and FIX [27). 

In the system resulting from Eq. (3.5), the forcing term determining the solution arises 
from the boundary integral around oA. It is therefore clear that the boundary value 
problem should be a well-posed one, and the governing differential equation should be 
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elliptic. In parts of the domain where the flow becomes supersonic, attention must be paid 
to reformulation of problem, for instance, carrying out the finite element discretization 
only in the "space-like" directions normal to the streamline. Such a semi-discrete finite 
element approach resembles closely the method of integral relations. However, the greater 
flexibility in the finite-element method allows one to patch together local solutions each 
of which may be constructed according to its own peculiarities. Singularities and asymptot­
ic behaviours may be often described analytically; their judicial use will significantly 
increase the effectiveness of the numerical method. 

3.1. The nozzle problem 

We start with the Emmons nozzle (Fig. 1), which is formed by two hyperbolas accor­
ding to Eq. (2.11) with 'YJw = 0.6, i.e., 

y 2 -x2 tan2 0.6 = sin2 0.6. 

The complex potential Eq. (2.12) provides both the mapping between the physical x, y 

and working ~' 'Yj-planes, and the incompressible speed ratio explicitly: 

( 
2 )1/2 

(3.6) Q = cosh 2~+cos2'YJ 

We shall proceed with the 1p-formulation, Eqs. (2.19) and (2.22). 
Consistent with the streamline perturbation concept, we write for an assigned flux "Pw 

(3.7) 1p = k('Yj+IJI), 

where lJI is the perturbation, and k = "Pwi'YJw· 
Eq. (2.19) becomes an equation for IJI, 

(3.8) (l-M 2)'f';;+'f'.,+M 2 [(I +'f',) %• + 'l'0 ~] = 0, 

while Eq. (2.22') turns into 

(3.9) 
( ) 

Y+l 

M 1 + y~ l M2 - Z<y-o = kQ(l +IJI
11
). 

For subcritical flows, because of the symmetry of the flow pattern only the solution in 
a quadrant of the ~' 'Yj-plane needs to be computed. The boundary conditions, as discussed 
earlier, become 

i) lJI =0 along 'YJ = 0, 'YJ = 'YJw, 

(3.10) ii) P~; = 0 along ~ = 0, 

iii) lJI =0 along ~=~a' 

where at the station ~ = ~a' the incompressible field is assumed to hold. EMMONS [19] 
chose 'YJw = 0.6, ~a = 1.35 in his computations. These values are retained in our calcula­
tions so that the results may be compared. 

It is now observed that a finite element program devised for Eqs. (3.8), (3.9) and (3.10) 
is in fact applicable for a much wider class of nozzles, not at all restricted to the particular 
hyperbolic shape studied by Emmons. The nozzle shape only needs to be such that the 
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corresponding incompressible flow may be assumed to have constant pressure across its 
entrance section and parallel streamlines at its exit, or, by reversing the flow direction, 
parallel streamlines at entrance and constant pressure at exit. The shape of the nozzle 
plays its role through the incompressible speed Q (or, equivalently, the incompressible 
pressure field), and the parameter rJw, and the problem is completely determined for 
specified 1Jlw. However, because 1Jlw for a given nozzle and the stagnation sound speed c0 

is bounded from above, more conveniently Em mons prescribes instead the Mach number 
at the origin ~ = rJ = 0, and the appropriate 1Jlw is evaluated as a consequence. 

FIG. 4. Composition of 4 six-node triangles 
into a quadrilateral element. 

r-----------~Er-----------~·Wl 

IX 

VIII 
1)----------------{31}------------~. 

FIG. 5. Typical mesh layout for subsonic nozzle. 

A finite element program has been developed for this case using quadrilateral elements, 
each consisting of four six-node triangles in which the unknown 1p is quadratically inter­
polated in term of the nodal values (Fig. 4). Elimination of the interior nodal unknowns 
(nodes 9 through 13) leaves a total of eight unknowns for each basic quadrilateral element. 
A typical 3 x 3 layout in the ~, rJ-plane with nine elements is shown as Fig. 5. The total 
number of nodal unknowns is 40, but 19 of them, along rJ = 0, rJ = rJw, and ~ = ~a are 

12 Arch. Mech. Stos. 5-6176 
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immediately set equal to zero according to (i) and (iii) of Eq. (3.10). The natural boundary 
condition P~ = 0 along ~ = 0 is accounted for in the boundary integral of Eq~ (3.5). 
The set of equations is then solved iteratively. Since the elements have only ea continuity, 
after each iteration the derivatives at a nodal point evaluated from the adjacent elements 
are generally not in full agreement with one another. The usual practice is to assign simply 
the arithmetic average to be the representative value. With P~ and P17 thus determined, 
and the nodal Mach number following from Eq. (3.9), the functions K1 , K2 , and K3 

for the next iteration may then be evaluated. The convergence criterion is on the basis of 
the local values of either 'P or M. 

For the supercritical case, the flow enters subsonically but exist at supersonic speeds. 
We no longer have symmetry with respect to the ~-axis, and must employ a marching pro­
cedure for the supersonic domain in the downstream direction. To circumvent the trans­
onic throat region, a short-cut is to divide the flow into three "patches", with a small 
transonic patch describing the transition from subsonic to supersonic in the throat region. 
The upstream subsonic patch can be formulated as above with minor alterations; the 
downstream supersonic patch must be re-formulated into an initial value problem by 
applying the finite element discretization only in the 1]-direction. In the transonic patch, 
we take advantage of the known series solution due to OswATITSCH [28] or its improved 
versions due to HALL [29], or KLIEGEL and LEVINE [30], to provide both the upstream 
boundary condition for the subsonic patch and the initial conditions for the supersonic 
patch. The results for the Emmons nozzle have been reported earlier [12]. Further details 
can be found in CHEN's thesis [16]. 

There remains the case when the flow is still su bcritical, and symmetric with re­
spect to the ~-axis, but supersonic pockets form along the walls in the throat region. 
Strictly speaking we need to provide again a separate routine to handle the flow in the 
supersonic pocket as an initial value problem and patch it to the rest which is subsonic. 
EMMONS' treatment [19] of this difficulty is rather clever but ad hoc, and· CHEN [16] has 
also succeeded in working out its counterpart in his finite element attack. The double­
valued nature of M vs. (!q, Eq. (2.22), making the iteration particularly delicate in the 
neighbourhood of the sonic line, has to be handled with special care. In this respect, no­
ting that the variation of M vs. q, Eq. (2.23), is always monotonic, it is definitely prefer­
able in such circumstances to use the c/>-formulation as presented below. 

3.2. Uniform flow over symmetrical bodies 

Here we take the flow of a uniform stream of subsonic velocity over a circular cylin­
der as the pilot problem. Eq. (2.14) provides the mapping and the incompressible speed 
ratio is 

(3.11) 

With the c/>-formulation, the velocity potential is to be written as the sum of an asymp­
totic incompressible field plus a perturbation l/J: 

(3.12\ u 
cl> =- (~+l/J). 

Co 
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Restricted to shockless flows, again only one quadrant of the ~, n-plane will be the domain 
of computation. Parallel to Eqs. (3.8) and (3.9), the governing equations are 

(3.13) (1-M')<Pu+<l>.,- M' [(I +<I>,) ~ + <P, ~] = 0 

and 

(3.14) M (1 + y~l M't-} = ~ Q(I+<P,). 

In fact, Eq. (3.14) permits an explicit solution for M2 in terms of Q(1 +(/)~), and by sub­
stituting the result in Eq. (3.13), we have, to O(c), 

(3.15) [I - y~ I A2 (1 +2<1>0)] <l>u + [I - y~ I A2 (1 +2<1>0)] <1>,, 

- A2Q[Q~(l +3(/);)+Q?]cJ)?]] = 0, 
where 

n- uz - M~ 
A - 2 -

Co 1 + y-l M2 
2 00 

An equation equivalent to Eq. (3.15) has been derived by CAUGHEY [3] in a finite difference 
method for airfoils. 

The boundary conditions in Fig. 2 are 

i) cp =0 along EFGA, 

(3.16) ii) (/); = 0 along ~ = 0, 

iii) (/)'1 = 0 along rJ = 0. 

Condition (i) is of course a simplification since EFGA can never be at infinity in actual 
computation. It would be more accurate to prescribe the asymptotic behaviour of a do­
ublet whose strength then enters at the nodes along EFGA, and is determined together 
with the rest of the nodal unknowns. As tested in Chen's thesis, with ~ and rJ equal 6 at F, 
the doublet term is found to have negligible influence on the results even at critical Mach 
number. (In lifting cases, the asymptotic logarithmic singularity due to circulation is of 
some significance; see SHEN [19], HABASHI [18]). Another alternative is to replace (i) by 
another Neumann condition, (/)'7 = 0, which will increase the number of unknowns 
slightly. 

Th~s, again, we see that Eq. (3.15) subjected to the homogeneous boundary condi­
tions, Eq. (3.16), can be programmed once and for all, applicable to other body shapes 
that are symmetrical with respect to both the ~and n-axes. For bodies symmetrical only 
with respect to the ~-axis, an obvious and trivial modification of condition (ii) of Eq. 
(3.16) should be made, but the details need no elaboration. The body shape enters thro­
ugh Q, and the free stream Mach number through the parameter A. 

A finite element program has also been developed to handle such cases. The basic 
element chosen is the BCIZ nine-parameter cubic triangle, the parameters being the nodal 
values of (/), (/)E and (/)'7 at the vertices. The velocity field follows without interpolation. 

12* 
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FIG. 6. Typical mesh layout for flow over a symmetrical body. 

A typical layout is shown in Fig. 6, where the body is mapped to the line segment 1~1 ~ 2. 
The algebraic system resulting from Eq. (3.5) is solved iteratively, as in the tp-formulation, 
through adjusting the corresponding coefficients K1 , K4 and K3 • 

4. Calculated examples 

4.1. The Emmons' nozzle 

With the tp-formulation, six-node quadratic elements, and the 3 x 3 mesh layout of 
Fig. 6, the computed results for the subcritical case of M = 0.692 at the origin are com­
pared with those due to EMMONS [19] in Fig. 7. The agreement is notable especially in view 
of the very small number of elements employed. Emmons' results are, of course, by no 
means exact. It is therefore also desirable to examine the discretization error of the finite 

- 1.2 -1.0 - 0.8 -06 -04 -02 0 02 04 06 08 1.0 1.2. 

-+---+- -- - ·-- - ---~---~-

FIG. 7. Comparison of finite element solution with Emmons results; M= 0.692at origin. 
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elements analysis. A systematic mesh refinement starting with a 2 x 2 layout, and succes­
sively halving it to 4 x 4 and 8 x 8 has been studied. The difference of the nodal stream 
function values between 4 X 4 and 8 X 8 appears to be within I o- 5 X "Pw. 

Calculations for higher Mach numbers with the presence of a supersonic pocket at the 
walls and when the flow exits supersonically have also been made, but not with the stand­
ard program. Typical results have been presented before and are omitted here. 

4.2. Flow over a circular cylinder 

The circular cylinder in a uniform stream has been the test problem for all kinds of 
methods treating compressible flows. In particular, the critical Mach number Mer for the first 
appearance of the sonic point on the cylinder has been computed to a high degree of 
precision, see IMAI [3I], SIMASAKI [32], and HoFFMAN [38], all based on the Rayleigh-Janzen 
series. In a six-term expansion Hoffman arrives at a value of 0.3983 ±0.0002. Meanwhile, 
by using five strips in the method of integral relations, which is closely related to the semi­
discrete finite element method alluded to above, MELNIK and IVEs [7] arrive at Mer = 
0.39853 ±0.00002, in essential agreement with Hoffman's value. On the question whether 
a shockless supersonic pocket can exist over the cylinder at slightly higher Mach nu­
mbers, Hoffman estimates that the Rayleigh-Janzen series has a radius of convergence 

Mer ~ M < I.055 Mer• 

Thus the lower bound may practically be at Mer, and it may explain the convergence 
difficulty near Mer in numerical schemes based upon the Poisson iteration where the source 
term represented the compressibility effects are determined through successive iteration. 
(This difficulty in fact has also been our experience with the finite element method [12, 
16, 17]). However, in a velocity potential formulation and avoiding the approximation 
of the Laplace operator, HABASHI [17, I8] has been able to obtain shockless flows at 
Moo = 0.42. 

In testing our program for the tp-formulation, for low subsonic speeds up to Moo = 0.3, 
we use a 7 x 4 grid in the quadrant, Fig. 8. There are 247 unknowns but reducible to I07 
after static condensation. The circle lies between ; = ±2, on which 9 nodes are placed, 
with smaller spacing near the stagnation point where the solution is expected to vary more 
rapidly. Starting from Moo = 0 and marching progressively at Mach number steps of O.I 
to Moo = 0.3, we find that the program converges in I or 2 iterations to achieve a local 
Mach convergence of 0.001. For better accuracy of the result, especially at higher Mach 
numbers, the layout is then modified to a lOx 7 grid in the quadrant and the outer bounda­
ry extended to ; = 6 and 'fJ = 6. As in HABASHI [17], the first layer next to the cylinder 
is chosen to be very thin, i.e., at 'fJ = 0.05. The final number of unknowns is increased to 
245. A typical result at Moo = 0.35 is shown as Fig. 9, where IMAI's three-term approxi­
mation [31] is included for comparison. At M00 = 0.4, the asymptotic behaviour of 
a doublet of unknown strength A is added along the outer boundary chosen, and A is 
determined together with the nodal unknowns in the program. Our answer gives A = 1.089, 
while IMAI [34] has found it to be 1.10 from a three-term M~-expansion. 

The program for the 4>-formulation with cubic triangular elements is also tested on the 
circular cylinder. Here the layout is chosen to be 20 x 6 in the half plane, again with body 
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FIG. 8. Typical mesh layout for flow over cylinder, tp-formulation. 

between ~ = ± 2 and outer boundaries along ~ = ± 6, rJ = 6, Fig. 8. There are a total 
of 441 parameters, 39 of which are placed on the surface at 13 nodes. The major advantage 
over the tp-formulation is the ease and accuracy to evaluate velocity and Mach number 
at the nodes, particularly significant at higher Mach numbers. In agreement with HABASHI 
[17, 18], no convergence difficulty is met up to M00 = 0.42, at which definitely one node 
becomes supersonic. We note that, according to Hoffman, Moo = 0.42 is definitely at the 
upper bound of the Rayleigh-Janzen series. Further mesh refinement to ascertain the accu­
racy of the finite element solution, however, is yet to be done. 

4.3. Flow over ellipse and other symmetrical airfoils 

Since body shape enters our program only through its incompressible speed ratio Q, 
the application to other bodies is readily made especially if the complex potential is anal­
ytically available. For high Mach number subsonic flows, the <P-formulation should be the 
choice. We have computed several cases with the same program and mesh layout essentially 
as described above for the circular cylinder. For relatively thin bodies it is obviously 
important to use smaller mesh size near the stagnation points. 

Following GREENSPAN and lAIN's finite-difference implementation of the variational 
principle [10], RAsMUSSEN [11] has recently published results for high subsonic flows over 
an ellipse and a Karman-Trefftz symmetrical airfoil with 6° trailing edge angle, both 
having a thickness ratio of 10%. In the case of the ellipse at M<X) = 0.8, 357 unknowns are 
used and 1000 iterations are needed to reach 0.0001 convergence in the Mach number 
along the surface, and the computing time is reported to be 20 minutes on the IBM 360-65. 
For the same flow, our program with 447 unknowns turns out to require only 6 iterations 
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FIG. 10. Local Mach number at the surface of an ellipse, thickness ratio 10%. 

897 

for the same convergence criterion and 40 seconds on the IBM 370-168, equivalent to 
about 3 minutes on the IBM 360-65. Comparison of the computed results show excellent 
agreement in Fig. 10, where the abscissa is the angle on the mapping circle. The same 
agreement holds also at M CX) = 0.82, when both show a supersonic pocket. A typical 
comparison for the flow over the Karman-Trefftz airfoil is as in Fig. 11, where the 
solid line is due to RASMUSSEN [11], the free stream Mach number being 0.75. To fill in 
more points near the peak velocity, we put in extra nodes on the surface and the layout 
is changed to a 24 x 6 grid work, with 525 unknowns. 

http://rcin.org.pl



898 

M 

10 

0 

0.5 

S. F. SHEN AND I-H. C. CHEN 

0 

M==075 
o Fi."nite £/ement, Chen(reF.16) 

- Rasmussen ( ref 11) 

0 45 90 135 180 8 

FIG. 11. Local Mach number at the surface of a Karman-Trefftz airfoil with 6° trailing edge angle and 10% 
thickness ratio. 
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FIG. 12. Comparison of results for the 6% circular arc airfoil. 

As a further example, the program is applied to a symmetrical circular arc airfoil 
of 6% thickness. At M00 = 0. 774, 0.806 and 0.840, the results are compared in Fig. 12 
with those from finite differences and the finite element calculation due to CHAN and 
BRASHEARS [35] and the exeprimental data of KNECHTEL [36]. Both the finite difference 
and the finite element calculations in Ref. [35] are based on the transonic perturbation 
equation for thin airfoils, while ours is free from such approximation. At the highest Mach 
number, it is probable that our results should be preferred. 
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5. Conclusions 

The finite element programs described above, one for the stream function and the 
other for the velocity potential, are shown to be efficient and accurate in the calculation 
of high subsonic shockless flows including the occurence of a supersonic pocket. Both 
are universal in the sense that the body shape enters in a simple manner through the in­
compressible speed ratio, or pressure field, which can be determined by other means which 
may be analytical, numerical, or experimental. For practical problems, the accuracy 
can be controlled through mesh refinement without revision of the program. 

The success of the program is primarily due to the exploitation of the fact that the 
streamline pattern is rather weakly dependent on compressibility effects in the class of 
flows considered. Our perturbation equations can easily be carried to higher order, and 
no restriction on either the reference Mach number or the thickness of the body is neces­
sary. The computation is done in the ~' 17 plane so that full advantage may be taken of 
the simple form of the incompressible streamline pattern and essentially the same pro­
gram covers both the nozzle flow and the flow over a body. In fact, for multiple bodies 
or wind tunnel interference problems, only a revision of the boundary conditions will 
suffice. Such is not the case for methods, like those of SELLS [3], MELNIK and IvEs [7], 
or SA TO [8], which map the computational domain into the interior of a circle. 

Between the stream function and the velocity potential formulations, the latter should 
be preferred especially for high subsonic flows. The stream function program has a slight 
advantage for low subsonic flows where the Dirichlet type boundary conditions prevail. 
Because the local Mach number must successively be approximated through iterations, 
nead the local sonic point, minor inaccuracy of the stream function will invariably 
cause difficulty. The velocity potential formulation is free from this trouble, and, in 
addition, the equation itself is simpler for numerical computation. 

Although our programs predict the presence of supersonic pockets which are in agree­
ment with the results of other computations for the examples considered, further study 
with refined mesh work in the supersonic pocket is of basic interest. It is not at all clear 
that as more elements become supersonic, the finite element formulation on the basis 
of a boundary value problem would not run into stability difficulty. Confidence in the 
accuracy of the details of the supersonic pocket must be established before the next cru­
cial step of shockfitting can be attempted for transonic flows of still higher Mach number. 

To pursue this objective, we should theoretically switch the program locally to a differ­
ent routine that properly poses an initial value problem in the supersonic parts of the 
computation domain. Because of the flexibility of the finite element method it should 
be feasible to patch the local supersonic routine- by either line relaxation using finite 
differences or the method of integral relations, for example -to the main subsonic pro­
gram. In the supersonic part, marching along the streamlines will be a key feature, and 
our choice of the rectangular grid in ~' n-plane is clearly optimum for the procedure. 
In addition, the streamlines themselves are also characteristics, along which other in­
formation such as vorticity, entropy, etc. may be propagated in more complex situations. 
Their ease of identification becomes then even more significant, but in our formulation 
is already built-in for whatever body shape. 
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