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Steady high subsonic plane compressible flows
Finite elements solution by streamline perturbation

S. F. SHEN and H. C. CHEN (NEW YORK)

Two FINITE element programs for two-dinmensional subsonic compressible flows have been de-
veloped which are shown to be rapid, accurate, and flexible up to the transonic regime, including
the prediction of locally supersonic pockets. The computation domain uses the incompressible
velocity potential and stream function as Cartesian coordinates. A thin-airfoil type expansion
is carried out, effectively to look for the solution as a perturbation of the incompressible stream-
line pattern. One of the two programs is for the stream function with 6-node quadratic trian-
gular elements, and the other for the velocity potential with 9-parameter cubic triangular ele-
ments. Test cases include the Emmons nozzle, the circular cylinder, the 109 ellipse, and several
symmetrical airfoils, all carried to the transonic regime. As the sonic condition is locally ap-
proached, the velocity potential program is to be preferred because of the necessary iteration for
the local Mach number, and the more accurate veiocity field from the cubic element used. The
same programs can be used for other problems as long as the incompressible field is known or
can be constructed, with no restriction to shape or thickness.

Przygotowano dwa programy rozwigzywania dwuwymiarowych zagadnien sci§liwych przeply-
wow poddzwigkowych metodg elementdw skonczonych. Jak sie okazalo programy te sa szybkie,
doktadne i moga by¢ z powodzeniem wykorzystane az do obszaréw naddzwiekowych, z prze-
widzeniem lokalnie naddzwigkowych , kieszeni™ wiacznie. W trakcie obliczen jako nowe wspol-
rzedne kartezjanskie przyjgto niescisliwy potencjat predkosci i funkcjg pradu. Dokonano roz-
winigcia rozwigzania tak jak dla cienkiego profilu lotniczego. Efektywnie poszukiwano rozwia-
zania, stosujac perturbacje niescisliwego modelu linii pradu. Jeden z dwoch programéw shuzy
do rozwigzywania rownania na funkcje pradu przy przyjeciu elementéw kwadratowo-tréjkat-
nych o szesciu wezlach kazdy. Program drugi rozwiazuje rownanie dla potencjatu predkosci
z szeécienno-trojkatnymi elementami o dziewieciu parametrach kazdy. Jako przypadki testowe
rozpatrzono dvsz¢ Emmonsa, walec kolowy, 10% elipse i wiele symetrycznych profili lotniczych,
przy czym wszystkie obliczenia prowadzono az do zakresu naddiwigckowego. Przy zblizaniu
si¢ lokalnie do predko$ci diwigku, lepszy, jak si¢ okazuje, jest program na potencjal predkosci
z uwagi na stosowanie niezbednej iteracji lokalnej liczby Macha i uzyskiwanie dokladniejszego
pola predkosci dzieki uzyciu elementu szeéciennego. Ten sam program mozna z powodzeniem
wykorzysta¢ do obliczenia numerycznego innych zagadnien, o ile obszar niescisliwy jest znany
lub fatwy do skonstruowania bez jakichkolwiek ograniczen jego ksztaltu lub grubosci.

HaroToBneHb! ABe NpIrpammbl pellieHHMA JBYXMEPHBIX 3a/1ad CHKHUMaeMbIX HO3BYKOBBIX Te-
YeHWI METOOM KOHEUHBIX asieMeHToB. Kak oKasanack 9TH NporpamMme! ObICTpPhI, TOYHBI K MO-
TYT GBITE C YCMEXOM HCIO/IB30BaHLI BIUIOTH 10 CBEPX3BYKOBBIX obiacteil c mpenBujeHHeM
JIOKAIBHO CBEPX3BYKOBLIX ,,KapwaHoB’’ BK/IOuMTesbHO. B npoliecce pacueToB KaK HOBble
JIEKapTOBbIE KOOPAHHATHI NPHHATHI HECKHMAeMBIH TOTEHIMAN CKOPOCTH M (DYHKUMA TOKA.
IIpoBenero pasanokeHne pelieHMsa KaK Q7 TOHKOro aBHauuoHHoro npodmnna. Dddextnsro
HILETCA pellieHHe NMPHMEHAA BO3MYLIEHHE HEC:KUMaeMol Moaeny nuHuil Toka. OnHa u3 OBYX
MporpamMm CIIYMHT JUIA PellleHus YPaBHEeHUA 1A QYHKLUMM TOKa, NPH NPHHATHM KBaIpaTHO-
TPEYrOJEHBIX 2JIEMEHTOB ¢ 6 yanamm Kaxdelii. Bropas nmporpamma pelraer ypaBHeHHE IS
MOTEHIHANA CKOPOCTH C KyOMYeCKO-TPEYTOJNBHBIMH JJIEMEHTAMH C 9 mapamerpamu KarKablid.
Kak TecroBele ciyuaif paccMoTpeHel comio DMMOHCA, KpYrosoif umamHap, 109, asmmmmic
M MHOI'0 CHMMETPHUHBIX aBMALMOHHBIX NMpoduneil, npuyem Bce pacyeTbl NPOBEAEHBI BILIOTH
/10 cBepX3BYKOBO# o6nacTu. IIpn cumenun MoKaNIBHO K CKOPOCTH 3BYKa JIyulleif nporpam-
MOH, KaK OKa3bIBAaeTcHd, ABJIAETCA NPOTpPamMma JUIA MOTEHIMANIA CKOPOCTH H3-3a NPUMEHEHHA
HeoGXoauMoil JIoKaIERO# MrepaLmu uncia Maxa n nonyvenust Gosiee TOUHOrO MOJA CKOPOCTH
Gnarofaps HCMONb30BAHMIO KYOMUYECKOT0 /IEMEHTa. DTy CaMyIo IIPOrPamMmy MOYKHO C YCIEXOM
MCMONb30BaTh /I YHCIEHHOTO pacuera APYTMX 3a/1ad, eciii HecHumaemas obnacTs H3BECTHA
HIIH JIETKO €€ MOYKHO MOCTPOMTH 0e3 HMKAKHX OTPaHMYeHMil Ha ee (OpMY MM TOJILIHMHY.
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1. Introduction

RECENT interest by the aircraft industry plus the increasing capacity of the high speed
computers have led to great progress in the numerical computation of transonic flows.
A number of highly effective finite-difference schemes [1, 2, 3, 4] are well established,
especially for the two-dimensional airfoil problem. Some of them can handle even the
difficult task of locating the weak shock springing from the body surface. Another approach
via Dorodnitzyn’s multi-strip method of integral relations [4, 5, 6, 7, 8] also produced
several interesting case studies with encouraging results. The hope is to economize the
computation by a decrease of the number of the unknowns. The method of integral rela-
tions may be regarded as basically of the same nature as the semi-discrete version of the
finite element method, both using interpolation for the unknown in one of the coordinates
and controlling the accuracy in some average integral sense. To achieve further economy,
then, it seems logical that the finite element method shoud be explored for similar appli-
cations.

The finite element method, in theory and in practice, performs best for linear partial
differential equations of the elliptic type, for which a variational principle exists and is
easy to implement numerically. Highly popular, with justification, in the treatment of stuctu-
res of complex geometry in solid mechanics, it has yet to receive serious consideration from
aerodynamicists. No doubt the reason is partly the advanced state of other numerical
methods already tested and at our disposal. Although its potential of savings in the com-
puting cost may be luring, the feasibility should first be proved. For compressible flows,
up to the transonic regime, the governing equation is highly non-linear and may not re-
main elliptic everywhere. Whenever a shock wave appears, its unknown location and th=
discontinuity of the solution cannot be conveniently described by simple interpolation.
Even restricted to shockless flows, a variational principle may exist but is of little conso-
lation: The functional involves a highly transcendental integrand, and previous attempts
in the test case of the flow over a circular cylinder, starting with WANG [9] and more re-
cently by GREENSPAN and JAIN [10] and RasmusseN [11], are all heavily time-consuming.
Whenever the critical Mach number is exceeded and locally supersonic flow takes place,
any numerical procedure, following the variational principle, trying to get at the solu-
tion as that of a boundary value problem can further be challenged with good reason.

It is apparent, as we have stressed in a review [12] earlier, that forethought and analy-
sis must first be given to the peculiarities of the flow in question, in order to reach a work-
able and efficient finite element formulation. The governing equation may be cast in
different forms, the resulting non-linear algebraic systems, from the variational principle
or otherwise, must be solved by iteration, and the success or ease in arriving at the answer
may greatly vary. An obviously straightforward approach to the compressible flow prob-
lem, for example, is to write the governing equations for the streamfunction or the ve-
locity potential as a Poisson equation, equivalent to an incompressible flow with a spa-
tial distribution of sources in which all terms due to compressibility are dumped. Regard-
ing the source terms as known in an iteration process, the variational principle and its
finite element treatment for the Poisson equation is simple and straightforward. Such
a scheme has been adopted by many investigators [13, 14, 15, 16]. As the numerical
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counterpart of the Rayleigh-Janzen expansion, it is quite satisfactory for low Mach
number flows, but most definitely and rapidly deteriorates as the Mach number goes up.
The replacement of the operator by a Laplacian is evidently too crude, and in regions
of supersonic flow not even qualitatively correct.

Our studies in the finite element method for high subsonic flows therefore give consid-
derable attention to rewriting the differential equation before the formal aspects of re-
ducing it to an algebraic system are carried out. In one method, the operator is approxi-
mated in each element as that for small perturbations about a local uniform flow, i.e.,
a locally defined Prandtl-Glauert approximation. The finite element procedure is carried
out in the physical plane for each element and then the elements are properly assembled.
This investigation and some of its applications have becn reported by SHEN and
HaBasH1 [17, 18].

We describe in the following a second method, which is built upon the choice of the
incompressible velocity potential and streamfunction, for the same flow under considera-
tion, as the coordinates in the working plane where computations are to be made. The
very same coordinate system was used by EMMONS in his pioneering numerical calculation
of the nozzle flow [19], to map the computation domain into a rectangular strip. An in-
teresting feature turns out to be that all streamlines, for whatever body shape, are nearly
horizontal in the working plane. It immediately suggests a perturbation scheme, in the
nature of a “thin-airfoil” approximation (but in the working plane and with no restriction
on the actual thickness of the body). Hence the method is referred to as “streamline per-
turbation”. The finite element programs are then developed, and found to be highly effi-
cient, as well as flexible for easy modification to treat many'other problems. More details
can be found in CHEN [16].

As regards shock-fitting, in spite of the apparent success reported by CHAN and BRAs-
HEARS [35], we have not yet developed an effective technique to our own satisfaction.

2. Fermulation of the problem
2.1. Governing equations and the boundary conditions
For two-dimensional steady irrotational flow of a compressible fluid, the governing

equation may be written either in terms of the stream function y or the velocity potential ¢.
In Cartesian coordinates (x, y), we have

1 1 ) 3
@.1) (E"”‘)f ("9_"”’ L=
and alternatively,
2.2) (09 )=+ (0, = 0,

where g is the density, related to the velocity field through the relation

.3 e _ [ _y-1 (1)2];1—1
o 2 Co '
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y being the ratio of specific heats, g, and ¢, denoting, respectively, the reference density
and speed, both evaluated at the stagnation condition, and ¢ being the local speed defined

@4 o= g = G
0

It will be assumed that the incompressible case for the flow in question has been obtained
by other means, in terms of a complex potential w(z), say,

w(z) = &x, p)+in(x, y),

@.5) .
z=x+iy.

Clearly £ is the incompressible velocity potential and # the incompressible stream function,
in the usual convention. As a consequence, the velocity field (¥;, ¥;) and the local speed Q
follows

(2.6) u; = Ex = Ny, v = Ey = —Nx»

Q = Wi +v)'? = (E2+&)"? = (z+u)"2

Following Emmons’ treatment of the nozzle problem [19], we introduce &, # as the new
coordinates. The body contour is thus reduced to a line segment along the line » = const.
In the “working plane” with the &, #-coordinates, the velocity components u, v along
the x- and y-axis directions in the physical plane are defined by

u

T = 9—0(%'&%“*'“1%) = “i¢&_f’i¢m
Q.7 o @

v 0

— == (uiype—vip,) = Vi +ui,,

Co @

so that the local speed ¢ (= )/u?+9?) can be evaluated as

@9 G = o iU = coldF+)
The governing equations, Eq. (2.1) and Eq. (2.2), become respectively
@ [ev)+(ev)-o

' 0 3 . 0 ¥ .
and
(2.10) (e + (0¢y), = 0.

The non-linearity of Eq. (2.9) and (2.10) arises from the density p, which must be obtained
through Egs. (2.3) and (2.8). As already mentioned, the incompressible solution is taken
as given, therefore Q as a function of & and % is known.

For the boundary conditions, let us illustrate by means of two typical cases:

i) The internal flow through a nozzle (Fig. 1).

Let the shape of the nozzle be given, together with the suitable entrance and exit condi-
tions, so that the incompressible potential flow can be prescribed on and within the con-
tour ABCD, In the working plane, the domain 4BCD becomes a rectangular strip if 4D
and BC are chosen to be equipotential lines in the incompressible case. The constant val-
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FiG. 1. Physical and working planes; nozzle.

ues of 7 along AB and DC are known, but conditions along AD and BC for the compres-
sible case have to be specified with care: both are required if the entrance and exit flows
are subsonic, but the conditions along BC must be left free when the flow exits super-
sonically. Furthermore, for a nozzle of finite length, the conditions cannot be arbitrarily
assigned but should be reckoned together with the reservoirs, for instance, both upstream
and downstream. In the example calculated by EMMONS [19], the contours AB and CD
are portions of hyperbolas extending to infinity, described by

(2.11) y?—x?tan? 5, = sin? 9,

for which the complex potential is

(2.12) w = E+in = sinh™1z.

For subcritical nozzle flows, it is appropriate to assume the asymptotic incompressible
field for x or £ large,

(2.13) v = kn,
where k = y,,/1,,, ¥, being the mass flux. If the velocity potential is used as the dependent
variable instead of v, the analogous condition along AD and BC is

(2.13) ¢ = k&.

i) The external flow of uniform stream over a body (Fig. 2).

We have sketched the flow over a circular cylinder of unit radius as a typical body,
and the incompressible potential solution in question is, for a free stream velocity parallel
to the x-axis,

(2.14) w = E+f¢7=z+%.
Because of symmetry, only the upper half of both the physical and working planes need

%g- = 0 along ABCDE. On the outer contour EFGA the condi-
tions again may be complicated because of the possibility of shocks in the domain. Con-
sider for simplicity only subsonic uniform stream of ¢ = U, ¢ = p,, at infinity. Then we

may again assign

to be drawn. Clearly,

0 U = I
2.15 =" or =—F¢
(2.15) e ¢ E
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FiG. 2. Physical and working planes; circular cylinder.

along EFGA, by choosing the contour to lie sufficiently far from the body (BCD). Better

accuracy could be achieved by prescribing the appropriate asymptotic solution along
EFGA. Its effects will be shown later.

2.2. The streamline perturbation approximation

The implication of the conditions (Eq. (2.13) or (2.15)) is none other than that the in-
compressible flow pattern should again prevail at large distances. In the working &, n-plane,
not only the boundaries are rectified but the problem may be regarded as that of a channel
between parallel walls, governed by Eq. (2.9) or (2.10), where the physical body enters
only through effects of the incompressible velocity field in the density term. The stream-
lines are therefore expected to be approximately horizontal everywhere, and a thin-
airfoil type of approximation immediately suggests itself. Both EMMONS [19] and MEKSYN [20]
have already proceeded this way.

Fi1G. 3. Streamline perturbation due to compressibility.
1) — compressible streamline, 2) - - - incompressible streamline.
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Let £ be the angle between the streamlines with and without the compressibility effects,
evaluated in the physical plane, as shown in the sketch of Fig. 3. Using Eq. (2.7), we readily
find

(2-]6) tane = _l'uf_

Yy
and shall assume |e¢] € 1. Now Eq. (2.9) can be written as
(2.17) Alw£$+BlW€n+Ciwnn+Dl =0,
where

A, = yi+(1-MH)y]
B, = 2M*yy,,
(2.18) C, = (1-M3)ypi+y),
D, = Mzwﬁwé)(%—%‘— +%-Qi'—)-

Substitution of Eq. (2.16) into Eq. (2.17) and deletion of terms of the order of O(e?)
and smaller leads to

(2.19) (1_M2)%€+%‘?+Mz(?’eQeg%&) _0

which agrees with EMMONS’ approximate equation [19] to the order of O(e). Here M
is the local Mach number, and the body shape enters in the incompressible speed ratio Q.
In a similar manner, Eq. (2.10) can be rewritten as

(2.20) Ay $ee+Brpgy+Codpyy+ D, =0,
where

A, = (1-M?)¢i+¢7,

B, = ‘2M2¢:¢m
(2.21) C, = ¢+ (1-M?) g7,

By = _Mz(¢g+¢;)(ﬁQ_eg¢w_Qn),
1t is easily verified that
(2.16") —

&x

and omitting terms of O(e?) in Eq. (2.20) leads to

(2.22) ([_M2)¢s£+¢’m_|v|z ( ¢EQ$5¢nQn ) -0

as the alternative to Eq. (2.19). MEKSYN’S first approximation [20] results from omitting
the term ¢, Q,, of O(¢), in Eq. (2.22).
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Futher calculations need an explicit expression for the local Mach number M. In terms
of y, we have from Bernoulli’s equation,

_ v+l
2.23) M(l +—”;' MZ) el g —QQC = Q(yE +y2)'?
hence, for || <€ 1,

r+1
(2.23) M(I + ”—;‘— M3) 20=D _ gy, |
In terms of ¢, a simpler relation holds
1
(2.29) M (1 + 1;—1 M2) B s cin = Q(¢pZ+42)'2,
hence, for |e] <€ 1.
1

(2.24) M( 1L MZ) T _ 0.

We shall refer to the pair of Egs. (2.19) and (2.22) as the stream function formulation,
or y-form for brevity, and the pair of Eqgs. (2.21) and (2.23’) as the velocity potential
formulation, or ¢-form for brevity. Either pair can be used. The y-form takes Dirichlet
boundary conditions on the solid body, but requires careful handling of Eq. (2.22) in the
transonic region because of the choking phenomenon associated with the maximum of pg
vs. M. Experience shows that it works well for numerical sclution so long as in all iterations
the local Mach number never exceeds unity. The ¢-form takes Neumann boundary con-
ditions on the solid body. It turns out to be preferable in numerical calculations when
locally supersonic pockets appear, as the monotonic nature of the variation of g vs. M
in Eq. (2.23') can be iterated in a straightforward manner regardless of whether M 2 1.
In fact, the simplicity of Eq. (2.23) yields the explicit expression of M2, which will be
exploited later.

3. The finite element treatment

The finite element method is basically to discretize the solution of a field problem
through local approximations and suitable integral constraints. The latter are preferably
obtained by recasting the governing differential equation into a variational form. For the
two-dimensional compressible potential flows in question, the variational principles due
to Bateman are wellknown; see, e.g., the review by RASMUSSEN [21]. In the form of Egs. (2.1)
and (2.2), since o = p(g?), the operators are in fact ,,potential” and the following varia-
tional statements apply:

a) For Eq. (2.1)
611(1;))—&f(f )dA f—azpa"’ds

(.1)
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b) For Eq. (2.2)
oL (¢) = o f(f gdqz) dA — fg&qb -Z—ﬁ— ds
A a4

=0,

where A is the domain of interest, 4 its boundary, ds the arc length along 84, and n the
outward normal direction. These can be constructed following VAINBERG [22] and have
already been pointed out by GELDER [23]. The variations are to be taken on y and ¢,
respectively. Owing to the transcendental nature of the integrand in the area integrals,
the implementation for computation is rather inconvenient. A straightforward iterative
scheme would be to treat ¢ as a given field quantity and subdue it in successive approxi-
mation, in the manner of TAYLOR and SHARMAN [24] fifty years ago. It is already better
that the Poisson iteration mentioned in the “Introduction”. An even more successful
way of iteration has been reported by SHEN and HaBAsHI [16]. For working with Eq. (2.9)
or (2.10) in &, n-coordinates, obviously Eqgs. (3.1) and (2.21) are still valid with the prop-
er interpretation.

A direct approach by the Galerkin procedure mathematically amounts to the construc-
tion of a week solution. Briefly, consider Egs. (2.19) and (2.21), both being of the type

(3.3) (K, F)e+ (K  Fy),+ K3 = 0,

“:heie K} " Kﬁz, and K; are functions of F, Fy, F,, x, y. We seek an approximate solution
F.K,, K,, K; as

(3.4) F =N, »)F, K =N, »)K, et

in term of chosen known base functions N;(x, y), and unknown constant parameters
F;, K,;, K,;, K3;. The summation convention is of course implied, and the number of

the index i depends upon the desired accuracy. After proceeding in the usual way, a system
of algebraic equations is obtained

(3.2)

(3.5) [ (KiNiwE A Ky Nyy By = RsN)dA = § N(K, Folo+ K, Fyl)ds = 0,
A By
where F, = N F;, P‘:, = N;, F;, I, and I, are the direction cosines of the outward normal
at ds along the contour d4. Eq. (3.5) may also be regarded as the result of the variational
formulation in solving Eq. (3.3) iteratively, by evaluating K,, K, and K; from the last
iteration of F. Hence the boundary integral of Eq. (3.5) should be calculated from the
imposed values of F, F; and F,.

The essential feature of the finite element method lies in subdividing the domain A
into finite-sized elements and employing localized base functions N(x, y) that vanish
except in the immediate neighbouring elements sharing a common “node”. Eq. (3.5)
is then applied to each element first, and the results are assembled. For general discussions
on the choice of ¥;, the assembling process and other details, see the books by ZIENKIEWICZ
[25], GALLAGHER [26], and STRANG and Fix [27].

In the system resulting from Eq. (3.5), the forcing term determining the solution arises
from the boundary integral around 8A4. It is therefore clear that the boundary value
problem should be a well-posed one, and the governing differential equation should be
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elliptic. In parts of the domain where the flow becomes supersonic, attention must be paid
to reformulation of problem, for instance, carrying out the finite element discretization
only in the “space-like” directions normal to the streamline. Such a semi-discrete finite
element approach resembles closely the method of integral relations. However, the greater
flexibility in the finite-element method allows one to patch together local solutions each
of which may be constructed according to its own peculiarities. Singularities and asymptot-
ic behaviours may be often described analytically; their judicial use will significantly
increase the effectiveness of the numerical method.

3.1. The nozzle problem

We start with the Emmons nozzle (Fig. 1), which is formed by two hyperbolas accor-
ding to Eq. (2.11) with ,, = 0.6, i.e.,
y*—x?*tan? 0.6 = sin? 0.6.

The complex potential Eq. (2.12) provides both the mapping between the physical x, y
and working &, n-planes, and the incompressible speed ratio explicitly:

) 1/2
(3.6) Q= (m) '

We shall proceed with the y-formulation, Eqs. (2.19) and (2.22).

Consistent with the streamline perturbation concept, we write for an assigned flux y,,
(3.7 p = k(n+¥),
where ¥ is the perturbation, and k& = w,,/7,,.

Eq. (2.19) becomes an equation for ¥,

(3.8) (I—M3)‘J’ee+?’,m+M2[(l+¥’,,) L QQ‘] 0,
while Eq. (2.22’) turns into

7+l
(3.9) M (1 + l;—l Mz) 2050 = g0 (1+ %,).

For subcritical flows, because of the symmetry of the flow pattern only the solution in
a quadrant of the &, 7-plane needs to be computed. The boundary conditions, as discussed
earlier, become

) ¥ =0 along =0, #n=n1,,

(3.10) i) ¥ =0 along ¢&=0,
iii) ¥ =0 along &=46§,

where at the station & = £,, the incompressible field is assumed to hold. EMMons [19]
chose 7, = 0.6, & = 1.35 in his computations. These values are retained in our calcula-
tions so that the results may be compared.

It is now observed that a finite element program devised for Egs. (3.8), (3.9) and (3.10)
is in fact applicable for a much wider class of nozzles, not at all restricted to the particular
hyperbolic shape studied by Emmons. The nozzle shape only needs to be such that the
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corresponding incompressible flow may be assumed to have constant pressure across its
entrance section and parallel streamlines at its exit, or, by reversing the flow direction,
parallel streamlines at entrance and constant pressure at exit. The shape of the nozzle
plays its role through the incompressible speed Q (or, equivalently, the incompressible
pressure field), and the parameter 7,,, and the problem is completely determined for
specified y,,. However, because v, for a given nozzle and the stagnation sound speed ¢,
is bounded from above, more conveniently Emmons prescribes instead the Mach number
at the origin £ = 5 = 0, and the appropriate yp,, is evaluated as a consequence,

7l
Fic. 4. Composition of 4 six-node triangles ke
into a quadrilateral element. &
74
1X
@ @
@ vill
® G-
I |
@2 4?3) v Vil
7 2 3 |
O-O-—O—B— @

FiG. 5. Typical mesh layout for subsonic nozzle.

A finite element program has been developed for this case using quadrilateral elements,
each consisting of four six-node triangles in which the unknown o is quadratically inter-
polated in term of the nodal values (Fig. 4). Elimination of the interior nodal unknowns
(nodes 9 through 13) leaves a total of eight unknowns for each basic quadrilateral element.
A typical 3 x3 layout in the & #-plane with nine elements is shown as Fig. 5. The total
number of nodal unknowns is 40, but 19 of them, along 5 =0, = n,,, and & = £, are

12 Arch. Mech. Stos. 5-6/76
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immediately set equal to zero according to (i) and (iii) of Eq. (3.10). The natural boundary
condition ¥, = 0 along ¢ = 0 is accounted for in the boundary integral of Eq. (3.5).
The set of equations is then solved iteratively. Since the elements have only C° continuity,
after each iteration the derivatives at a nodal point evaluated from the adjacent elements
are generally not in full agreement with one another. The usual practice is to assign simply
the arithmetic average to be the representative value. With ¥, and ¥, thus determined,
and the nodal Mach number following from Eq. (3.9), the functions X,, K,, and K,
for the next iteration may then be evaluated. The convergence criterion is on the basis of
the local values of either ¥ or M,

For the supercritical case, the flow enters subsonically but exist at supersonic speeds.
We no longer have symmetry with respect to the £-axis, and must employ a marching pro-
cedure for the supersonic domain in the downstream direction. To circumvent the trans-
onic throat region, a short-cut is to divide the flow into three “patches”, with a small
transonic patch describing the transition from subsonic to supersonic in the throat region.
The upstream subsonic patch can be formulated as above with minor alterations; the
downstream supersonic patch must be re-formulated into an initial value problem by
applying the finite element discretization only in the #-direction. In the transonic patch,
we take advantage of the known series solution due to OSWATITSCH [28] or its improved
versions due to HALL [29], or KuLIEGEL and LEVINE [30], to provide both the upstream
boundary condition for the subsonic patch and the initial conditions for the supersonic
patch. The results for the Emmons nozzle have been reported earlier [12]. Further details
can be found in CHEN’s thesis [16].

There remains the case when the flow is still subcritical, and symmetric with re-
spect to the &-axis, but supersonic pockets form along the walls in the throat region.
Strictly speaking we need to provide again a separate routine to handle the flow in the
supersonic pocket as an initial value problem and patch it to the rest which is subsonic.
EMMONS’ treatment [19] of this difficulty is rather clever but ad hoc, and’ CHEN [16] has
also succeeded in working out its counterpart in his finite element attack. The double-
valued nature of M vs. og, Eq. (2.22), making the iteration particularly delicate in the
neighbourhood of the sonic line, has to be handled with special care. In this respect, no-
ting that the variation of M vs. g, Eq. (2.23), is always monotonic, it is definitely prefer-
able in such circumstances to use the ¢-formulation as presented below.

3.2. Uniform flow over symmetrical bodies

Here we take the flow of a uniform stream of subsonic velocity over a circular cylin-
der as the pilot problem. Eq. (2.14) provides the mapping and the incompressible speed
ratio is

@.11) 0=

With the ¢-formulation, the velocity potential is to be written as the sum of an asymp-
totic incompressible field plus a perturbation @:

G . Ti (E+ D).
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Restricted to shockless flows, again only one quadrant of the &, n-plane will be the domain
of computation. Parallel to Eqs. (3.8) and (3.9), the governing equations are

(3.13) (I_MZ)@ié'l"q)w—'MZ[(l-l-@E)_g_e"'@q% =0
and
R M+ 270w ¥ = Lovay,

Co

In fact, Eq. (3.14) permits an explicit solution for M? in terms of Q(1 + @), and by sub-
stituting the result in Eq. (3.13), we have, to O(g),
(3.15) [1 - ”T“ 22(1 +2¢e)] Dy + [1 - 3_»_2—_1 (1 +2455)] ®,,

_‘AZQ[QE(] +3@8)+Qq¢q] =0,
where

2 2
0 i 2
1+ 5 Ma,
An equation equivalent to Eq. (3.15) has been derived by CAUGHEY [3] in a finite difference
method for airfoils.

The boundary conditions in Fig. 2 are
i) @ =0 along EFGA,
(3.16) ii) & =0 along £&=0,
iii) @,=0 along % =0.
Condition (i) is of course a simplification since EFGA can never be at infinity in actual
computation. It would be more accurate to prescribe the asymptotic behaviour of a do-
ublet whose strength then enters at the nodes along EFGA, and is determined together
with the rest of the nodal unknowns. As tested in Chen’s thesis, with & and 7 equal 6 at F,
the doublet term is found to have negligible influence on the results even at critical Mach
number. (In lifting cases, the asymptotic logarithmic singularity due to circulation is of
some significance; see SHEN [19], HABAsHI [18]). Another alternative is to replace (i) by
another Neumann condition, @, = 0, which will increase the number of unknowns
slightly.

Thus, again, we see that Eq. (3.15) subjected to the homogeneous boundary condi-
tions, Eq. (3.16), can be programmed once and for all, applicable to other body shapes
that are symmetrical with respect to both the & and #-axes. For bodies symmetrical only
with respect to the &-axis, an obvious and trivial modification of condition (ii) of Eq.
(3.16) should be made, but the details need no elaboration. The body shape enters thro-
ugh Q, and the free stream Mach number through the parameter A.

A finite element program has also been developed to handle such cases. The basic
element chosen is the BCIZ nine-parameter cubic triangle, the parameters being the nodal
values of @, @, and D, at the vertices. The velocity field follows without interpolation.

12*
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Fi1G. 6. Typical mesh layout for flow over a symmetrical body.

A typical layout is shown in Fig. 6, where the body is mapped to the line segment |&] < 2.
The algebraic system resulting from Eq. (3.5) is solved iteratively, as in the y-formulation,

through adjusting the corresponding coefficients X,, K, and Kj,.

4. Calculated examples
4.1, The Emmons’ nozzle

With the yp-formulation, six-node quadratic elements, and the 3 x3 mesh layout of
Fig. 6, the computed results for the subcritical case of M = 0.692 at the origin are com-
pared with those due to EMmons [19] in Fig. 7. The agreement is notable especially in view
of the very small number of elements employed. Emmons’ results are, of course, by no
means exact. It is therefore also desirable to examine the discretization error of the finite
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Fi1G. 7. Comparison of finite element solution with Emmons results; M = 0.692 at origin.
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elements analysis. A systematic mesh refinement starting with a 2 x2 layout, and succes-
sively halving it to 4x4 and 8 x 8 has been studied. The difference of the nodal stream
function values between 4 x4 and 8 x 8 appears to be within 10~°x y,.

Calculations for higher Mach numbers with the presence of a supersonic pocket at the
walls and when the flow exits supersonically have also been made, but not with the stand-
ard program. Typical results have been presented before and are omitted here.

4.2. Flow over a circular cylinder

The circular cylinder in a uniform stream has been the test problem for all kinds of
methods treating compressible flows. In particular, the critical Mach number M., for the first
appearance of the sonic point on the cylinder has been computed to a high degree of
precision, see IMAI [31], SiMAsAk1 [32], and HOFFMAN [38], all based on the Rayleigh-Janzen
series. In a six-term expansion Hoffman arrives at a value of 0.398340.0002. Meanwhile,
by using five strips in the method of integral relations, which is closely related to the semi-
discrete finite element method alluded to above, MELNIK and Ives [7] arrive at M., =
0.39853+0.00002, in essential agreement with Hoffman’s value. On the question whether
a shockless supersonic pocket can exist over the cylinder at slightly higher Mach nu-
mbers, Hoffman estimates that the Rayleigh-Janzen series has a radius of convergence

Mo 2 M < 1.055 M.

Thus the lower bound may practically be at M., and it may explain the convergence
difficulty near M,, in numerical schemes based upon the Poisson iteration where the source
term represented the compressibility effects are determined through successive iteration.
(This difficulty in fact has also been our experience with the finite element method [12,
16, 17]). However, in a velocity potential formulation and avoiding the approximation

of the Laplace operator, HABASHI [17, 18] has been able to obtain shockless flows at
M, = 0.42.

In testing our program for the y-formulation, for low subsonic speeds up toM,, = 0.3,
we use a 7 x4 grid in the quadrant, Fig. 8. There are 247 unknowns but reducible to 107
after static condensation. The circle lies between & = +2, on which 9 nodes are placed,
with smaller spacing near the stagnation point where the solution is expected to vary more
rapidly. Starting from M, = 0 and marching progressively at Mach number steps of 0.1
to M, = 0.3, we find that the program converges in 1 or 2 iterations to achieve a local
Mach convergence of 0.001. For better accuracy of the result, especially at higher Mach
numbers, the layout is then modified to a 10x 7 grid in the quadrant and the outer bounda-
ry extended to & = 6 and n = 6. As in HaBasH1 [17], the first layer next to the cylinder
is chosen to be very thin, i.e., at = 0.05. The final number of unknowns is increased to
245. A typical result at M, = 0.35 is shown as Fig. 9, where IMAI’S three-term approxi-
mation [31] is included for comparison. At M, = 0.4, the asymptotic behaviour of
a doublet of unknown strength A4 is added along the outer boundary chosen, and 4 is
determined together with the nodal unknowns in the program. Our answer gives 4 = 1.089,
while IMA1 [34] has found it to be 1.10 from a three-term M2-expansion.

The program for the ¢-formulation with cubic triangular elements is also tested on the
circular cylinder. Here the layout is chosen to be 20x 6 in the half plane, again with body
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F1G. 8. Typical mesh layout for flow over cylinder, y-formulation.

between & = +2 and outer boundaries along & = +6, n = 6, Fig. 8. There are a total
of 441 parameters, 39 of which are placed on the surface at 13 nodes. The major advantage
over the y-formulation is the ease and accuracy to evaluate velocity and Mach number
at the nodes, particularly significant at higher Mach numbers. In agreement with HABASHI
[17, 18], no convergence difficulty is met up to M, = 0.42, at which definitely one node
becomes supersonic. We note that, according to Hoffman, M, = 0.42 is definitely at the
upper bound of the Rayleigh-Janzen series. Further mesh refinement to ascertain the accu-
racy of the finite element solution, however, is yet to be done.

4.3. Flow over ellipse and other symmetrical airfoils

Since body shape enters our program only through its incompressible speed ratio Q,
the application to other bodies is readily made especially if the complex potential is anal-
ytically available. For high Mach number subsonic flows, the ¢-formulation should be the
choice. We have computed several cases with the same program and mesh layout essentially
as described above for the circular cylinder. For relatively thin bodies it is obviously
important to use smaller mesh size near the stagnation points.

Following GREENSPAN and JAIN’S finite-difference implementation of the variational
principle [10], RasmusseN [11] has recently published results for high subsonic flows over
an ellipse and a Kdrmdn-Trefftz symmetrical airfoil with 6° trailing edge angle, both
having a thickness ratio of 10%. In the case of the ellipse at M, = 0.8, 357 unknowns are
used and 1000 iterations are needed to reach 0.0001 convergence in the Mach number
along the surface, and the computing time is reported to be 20 minutes on the IBM 360-65.
For the same flow, our program with 447 unknowns turns out to require only 6 iterations
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FiG. 10. Local Mach number at the surface of an ellipse, thickness ratio 10%.

for the same convergence criterion and 40 seconds on the IBM 370-168, equivalent to
about 3 minutes on the IBM 360-65. Comparison of the computed results show excellent
agreement in Fig. 10, where the abscissa is the angle on the mapping circle. The same
agreement holds also at M, = 0.82, when both show a supersonic pocket. A typical
comparison for the flow over the Kdrmdn-Trefftz airfoil is as in Fig. 11, where the
solid line is due to RAsMUSSEN [11], the free stream Mach number being 0.75. To fill in

more points near the peak velocity, we put in éxtra nodes on the surface and the layout
is changed to a 24 x 6 grid work, with 525 unknowns.
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FiG. 11. Local Mach number at the surface of a Kirman-Trefftz airfoil with 6° trailing edge angle and 10%,
thickness ratio.
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FI1G. 12. Comparison of results for the 6% circular arc airfoil.

As a further example, the program is applied to a symmetrical circular arc airfoil
of 6% thickness. At M, = 0.774, 0.806 and 0.840, the results are compared in Fig. 12
with those from finite differences and the finite element calculation due to CHAN and
BRASHEARS [35] and the exeprimental data of KNECHTEL [36]. Both the finite difference
and the finite element calculations in Ref. [35] are based on the transonic perturbation
equation for thin airfoils, while ours is free from such approximation. At the highest Mach
number, it is probable that our results should be preferred.
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5. Conclusions

The finite element programs described above, one for the stream function and the
other for the velocity potential, are shown to be efficient and accurate in the calculation
of high subsonic shockless flows including the occurence of a supersonic pocket. Both
are universal in the sense that the body shape enters in a simple manner through the in-
compressible speed ratio, or pressure field, which can be determined by other means which
may be analytical, numerical, or experimental. For practical problems, the accuracy
can be controlled through mesh refinement without revision of the program.

The success of the program is primarily due to the exploitation of the fact that the
streamline pattern is rather weakly dependent on compressibility effects in the class of
flows considered. Our perturbation equations can easily be carried to higher order, and
no restriction on either the reference Mach number or the thickness of the body is neces-
sary. The computation is done in the &, n plane so that full advantage may be taken of
the simple form of the incompressible streamline pattern and essentially the same pro-
gram covers both the nozzle flow and the flow over a body. In fact, for multiple bodies
or wind tunnel interference problems, only a revision of the boundary conditions will
suffice. Such is not the case for methods, like those of SELLs [3], MELNIK and IVES [7],
or Sato [8], which map the computational domain into the interior of a circle.

Between the stream function and the velocity potential formulations, the latter should
be preferred especially for high subsonic flows. The stream function program has a slight
advantage for low subsonic flows where the Dirichlet type boundary conditions prevail.
Because the local Mach number must successively be approximated through iterations,
nead the local sonic point, minor inaccuracy of the stream function will invariably

cause difficulty. The velocity potential formulation is free from this trouble, and, in
addition, the equation itself is simpler for numerical computation.

Although our programs predict the presence of supersonic pockets which are in agree-
ment with the results of other computations for the examples considered, further study
with refined mesh work in the supersonic pocket is of basic interest. It is not at all clear
that as more elements become supersonic, the finite element formulation on the basis
of a boundary value problem would not run into stability difficulty. Confidence in the
accuracy of the details of the supersonic pocket must be established before the next cru-
cial step of shockfitting can be attempted for transonic flows of still higher Mach number.

To pursue this objective, we should theoretically switch the program locally to a differ-
ent routine that properly poses an initial value problem in the supersonic parts of the
computation domain. Because of the flexibility of the finite element method it should
be feasible to patch the local supersonic routine — by either line relaxation using finite
differences or the method of integral relations, for example — to the main subsonic pro-
gram. In the supersonic part, marching along the streamlines will be a key feature, and
our choice of the rectangular grid in &, n-plane is clearly optimum for the procedure.
In addition, the streamlines themselves are also characteristics, along which other in-
formation such as vorticity, entropy, etc. may be propagated in more complex situations.
Their ease of identification becomes then even more significant, but in our formulation
is already built-in for whatever body shape.
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