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A Navier-Stokes analysis of developing slip flow 

B. GAMPERT (ESSEN) 

VELOCITY distribution and pressure drop are presented for incompressible slip flow in the inlet 
section of a parallel plate channel. In contrast to boundary layer theory, the Navier-Stokes pro· 
files show maximum velocities off the centerline. This phenomenon is explained as following 
from the high pressure gradients perpendicular to the channel axis. The dependence on Reynolds 
number and slip coefficient is discussed. The pressure decrease is compared for slip coefficients 
between 0.0 and 1.99. It is shown that by first-order boundary layer theory the overall pressure 
drop in the inlet region is given as too low. 

W pracy przedstawiono rozklad pr~dkosci i spadku cisnienia dla niescisliwego przepJywu z po· 
slizgiem u wlotu plaskiego kanalu zlozonego z plyt r6wnoleglych. w przeciwienstwie do teorii 
warstwy przysciennej profile maksymalnych pr~dkosci obliczone z r6wnan Naviera-Stokesa 
wyst~puj<t nie na linii srodkowej. Jak wyjasniono, zjawisko to wynika z dui;ych gradient6w 
cisnienia prostopadlych do osi kanalu. Przedyskutowano wplyw na rozwi<tzanie liczby Reynoldsa 
i wsp6lczynnika p0slizgu. Spadek cisnienia por6wnano dla wsp6lczynnika lepkosci wzi~tego 
z przedzialu 0-1,99. Pokazano, i;e calkowity spadek cisnienia w obszarze wlotu, obliczony 
wedlug teorii warstwy przysciennej pierwszego rz~du, jest zbyt zanizony. 

B pa6oTe npe.a;craaJieHo pacnpe,a;eJieHHe CI<opoCTH H na.a;emm .a;aaJieami ,r:t;JUI HecmHMaeMoro 
TetieHHH CO CI<OJil,)l{eHHeM Ha BXo.n;e llJIOCI<OrO KaHa.n:a, COCTOHtnero H3 napa.JJ.Jie.TibHhiX nJiaCTHH. 
B npoTHaoaec 1< TeopHH norpaHHtiHoro cnoH npocl>HJIH MaKCHMaJihHhiX ci<opocreii, BhitiHCJieHhi 
H3 ypaaHeHHii Haahe-CToi<ca, BhiCTynalOT He Ha cpe.a;HHHOH JIHHHH. KaK BhUICHeHo 3TO 
HBJieHHe CJie.n;yeT H3 60JibiiiHX rpa,r:t;HeHTOB .n;aBJieHHH nepneH,r:t;HI<YJIHpHbiX I< OCH KaHa.n:a. 
06cym,a;eHo BJIHHHHe Ha peiiieaHe tiHCJia PeiiHOJih,a;ca H Ko3cl>cl>HQHeHTa ci<oJibmeHHH. Ila,a;eHHe 
,r:t;aBJieHHH CpaBHeHO AJIH I<03cl>cl>HQHeHTa BH31<0CTH BHToro H3 HHTepaa.n:a 0-1 ,99. Iloi<a3aHO, 
tiTo noJIHoe na.n;eHHe .n;aaJieHHH a o6naCTH axo.a;a, pactiHTamwe no TeOpHH norpaHHtiHoro cJIOH 
nepaoro nopH.n;Ka, CJIHIIII<OM 3aHHmeHo. 

1. Introduction 

IN FLUID dynamics the wall shear stress rw is obtained from the velocity gradient 

(1.1) i = rJ~1 
w oy Y=O 

(y - dimensionless coordinate normal to the channel axis, u - dimensionless axial 
velocity component, asterisks omitted, see Eq. (2.5) ). In the nonslip case the velocity 
gradient follows from the Navier-Stokes equation subject to the boundary condition 

(1.2) uly=o = 0. 

Generally, gas flow can be treated as continuum flow with no slippage of the fluid over the 
bounding wall. If the pressure level is reduced or the solid surface "polished", perhaps 
in addition to rarefaction, slip has to be taken into account. In the slip flow regime which 
is confined to the Knudsen-number region 

(1.3) 
I

' 2-a 
0.01 -a-~ Kn ~ 0.1 

18* 
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the equations of continuum theory are retained [1]. The fluid surface interaction comes 
into play via the generalized boundary conditions 

(1.4) ujy=O = C ~u I . 
uy Y=O 

In Eq. (I .4) constant wall temperature is assumed. We have for the slip-coefficient C [2] 

2- et 
(1.5) C = -- Kn 

et 

(Kn = lfh, 1- mean free path, h --channel half-width). While Kn depends on the phy­
sical state of the gas, et is characteristic of the interaction system made up of a solid surface 
and a gaseous phase. The so-called accomodation coefficient of tangential momentum et 

is just that fraction of the incident momentum flux lost to the wall. Studies of the slip 
flow field have been carried out primarily for external flows, see ScHAAF [3]. For inner 
flows it appears that most authors have been investigating the Hagen-Poiseuill regime. 

The incompressible entrance flow in a parallel-plate channel was investigated for slip 
by SPARROW, LUNDGREN and LIN [4] and by QUARMBY [5] who integrated the first-order 
boundary layer equation. Because of the relationship 

(1.6) Kn "' Ma/Re, Re= Umh 
').! 

the flow field is incompressible for comparatively low Re-numbers only. So actually we 
cannot change from the Navier-Stokes to the first-order boundary layer equations. More­
over, for et ~ 1 slippage is a second-order boundary layer effect and becomes of first 
order only if et is small as compared with unity; the slip icondition, Eq. (1.4), is generally 
not compatible with first-order boundary layer approximation. 

In the present paper the steady laminar slip flow of an incompressible Newtonian 
fluid in the inlet section of a two-dimensional channel is analysed by integrating the Navier­
Stokes equations. The numerical method of solution developed is exact in the sense that 
no terms in the momentum equation which are not identically zero have been neglected. 

2. Formulation of the problem 

Introducing the stream function 1p defined by 

(2.1) 
01p 

V=---
OX 

and the vorticity, which in a two-dimensional flow can be written 

(2.2) 
ou OV 

w=----
oy ax 

we reduce the Navier-Stokes equation and the continuity equation to a parabolic vorticity 
transport equation 

ow a a ( o2
w o2w ) 

(2.3) Tt + ox (uw) + a,y(vw)-'J.! ox2 + oy2 = 0 
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and an elliptic Poisson equation for the stream function 

iJ21p iJ21p 
(2.4) ox2 + oy2 = w . 

Equation (2.3) is the "conservation form" of the vorticity transport equation since it may 
be shown that the transport property w is conserved. After rendering the terms of Eqs. 
(2.3) and (2.4) dimensionless it is possible to apply Reynolds principle of similarity. With 
h and um (mean velocity) being the characteristic length and velocity respectively, we define 

(2.5) 

p 
p*--­

- eu~' 
*- X y* = yh' x - hRe' 

* _ tum 
t - hRe' 

u* = ufum, v* = vRefum, w* = whfum. 

As the velocity approaches the fully-developed profile only asymptotically we change 
from the infinite x-region x E [0, oo] to the finite downstream boundary~ E [0, I] applying 
the transformation [6]: 

(2.6) ~=I- I+l.2Rex*' 
a~ 

ox* = n(~), 
on . 
a[= n, 

which results in the dimensionless conservation vorticity transport equation (we omit the 
asterisks!) 

ow 1 . ow I 2 o2w o2w a a 
(2.7) at = Re2 nn a[+ Re2 n o~2 + oy2 - h 8[ (uw)- ay (vw). 

The dimensionless vorticity and stream function are related by the Poisson equation 

I r 2 iJ21p • 01p 1 iJ21p -
(2.8) Re2 n 8~2 + nnaf + oy2 - w. 

Various inlet conditions were considered by WILSON [7]. On the assumption of uniform 
velocity component u and zero vorticity w we have, at the channel entrance, 

(2.9) ~ = 0: 1jJ = y' w = 0. 

It was shown, see VAN DYKE [8], that Eq. (2.9) does not replace the inlet condition u = 0, 
v = 0 which introduces weak vorticity into the inviscid core. 

Because of the small boundary layer thickness near the very beginning of the plate,. 
for outer flows and rx ~ I it might be doubted whether the Navier-Stokes equation is. 
appropriate there. But for inner flows the channel half-width may be considered as the 
characteristic length. Moreover, the mean free path is small as far as we confine ourselves. 
to small Kn-numbers (O.OI, or even lower) and C values resulting from small rx values. 

At the axis of symmetry we have 

(2.IO) y = I: 1p = I, w = 0. 

The channel wall is at y = 0. Higher order boundary layer theory, which has to assume t; 
to be small in order to get convergence of the power series, shows that for slip flow 
Vw ~ 0 is a third-order effect only. This argument might be reconsidered for large C values. 
In this paper the slip boundary conditions are (see Eq. (1.4)): 

I - r ou I - r / y = 0: Uly=O- 1, ~ - 1,W .Y=O' 1jJ = 'f/Jy=O· 
uy .Y=O 

(2.11) 
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The pressure gradient in the channel only weakly contributes to the slip velocity. The related 
term has been neglected in Eq. (2.11 ). 

Far downstream the fully-developed condition must be fulfilled: 

(2.12) ~ = 1: 
3 

(J) = 1 + 3' ( 1 - y). 

The solution of the large system of algebraic equations approximating the elliptic Poisson­
equation generally consumes the overwhelming amount of time. By using a method 
based on Fast-Fourier technique, which solves the system of equations directly in contrast 
to iterative procedures, the time needed has been reduced. The method works if one has 
constant mesh sizes and the partial differential equation has no first derivative in the 
Fourier-analysis direction. Because of the last restriction and Eq. (2.8) we can apply the 
Fourier transformation only in y-direction. In order to maintain sufficient accuracy, 
especially near the wall finite difference formulae which follow the Mehrstellen approach 
have been set up introducing a truncation error of O(LJy4

) only, without using more than 
three netpoints in each equation. 

3. Results 

In Table 1 the Re = 75 nonslip solution of this paper is compared with the Navier­
Stokes solution given by WANG and LONGWELL [6], who solved the nonlips case for Re = 75, 
and the results from boundary layer theory presented by SCHLICHTING [9]. The velocity 
profiles for ~ = 0.05 are given. This cross-section is located in the critical region very 
near the entrance. The present results and WANG and LONGWELL [6] are in good accordance. 

Table 1. Velocity-profile for.; = 0.05 

u u (WANG and y 
(ScHLICHTING) LONG WELL) 

u (this paper) 

0 0 0 0 
0.1 1.007 0.9958 1.0010 
0.2 1.040 1.0324 1.0208 
0.3 1.040 1.0265 1.0203 
0.4 1.040 1.0214 1.0177 
0.5 1.040 1.0178 1.0154 
0.6 1.040 1.0155 1.0138 
0.7 1.040 1.0140 1.0127 
0.8 1.040 1.0131 1.0120 
0.9 1.040 1.0126 1.0116 
1.0 1.040 1.0124 1.0114 

In contrast to boundary layer theory the Navier-Stokes profiles show maximum velo­
cities off the centerline. They are not flat but saddle-shaped with a velocity overshoot 
at Ymax = 0.2. 

In Fig. 1 u(y) is given for several channel cross-sections. Fluid moving from left to right 
enters the channel. With ~ increasing, the velocity maximum moves from the wall towards 
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the centerline while the peak is reduced and the profiles gradually become parabolic. 
No Reynolds-number dependence and no explanation for the saddle-shape of the velocity 
profiles were given in WANG and LONGWELL's paper. 

0 0.25 0.5 0.75 1.0 1.25 
u----+ 

FIG. ] . 

In Fig. 2 the pressure drop Llp(y ) between ~ = 0 and ~ = 0.2, as well as between 
~ == 0 and ~ = 0.4 is presented. There is a remarkable transverse gradient in the pressure 

· field near the entrance. This is in contradiction to boundary layer theory which assumes the 
pressure to be constant with respect to y. 

~p(y) 

' i 

!Re=50 ~=0 

0.2 04 0.6 0.8 1.0 
y-. 

FIG. 2. 

For small ~ large velocity gradients at the wall yield high shear stress values there. 
The boundary layer near the entrance is thin. This results in only a small amount of mass 
which must be transported to the channel center and only little acceleration of the central 
core is necessary. In accordance with this physical reasoning, in the vicinity of the entrance 
the pressure drop is largest near the wall. The pressure values themselves are higher near 
the axis, mass is prevented from getting to the central core which results in a velocity 
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·------------ -- ·· -- -- --------- - --- --- --- -~----------~-- ~----

overshoot. Comparison with Fig. 1 shows that with ; increasing, Ymax does move towards 
the channel axis in common with the region of largest pressure gradients ap 1 ay. 

In ;-direction the thickness of the boundary layer at the channel wall increases. The 
reduced central core must be accelerated mote because of the continuity equation, while 
the velocity gradient at the wall simultaneously becomes smaller and smaller. This at last 
results in constant pressure values in the y-direction. For ; = 0.6 (xlh ;:::::: 1.25) already, 
the maximum pressure drop is only 1.1 times the pressure drop at the axis. Accordingly, 
one expects the velocity overshoot to decrease. 

In Fig. 3, Umaxluaxis is shown as a function of ; for Re = 50, Re = 75 and several 
slip coefficients!;. For the initially flat velocity profile and for the fully-developed profile 
we have Umaxluaxis = 1 . The curves show maxima inbetween. Comparing Fig. 3 with Fig. 2 
we find that the increase in central concavity is due to the developing gradient in the y-direc­
tion while Umaxluaxis in Fig. 3 approaches 1 with aplay decreasing in Fig. 2. 

"1.0 3 r----,------,------.--------., 

0.2 0.35 

FIG. 3. 

0.45 
~---...... 0.55 

For Re = 75 we have higher shear stress values at the waiJ, the pressure gradient 
in y-direction is increased as compared with the Re = 50 flow field. The boundary layer 
thickness for a given; is reduced, less mass has to be transported towards the channel axis. 
As the results of the mathematical analysis presented in Fig. 3 show, the pressure gradient 
influence which favours the saddle-shape dominates and the velocity overshoot is higher 
for Re= 75. 

The gradient aplax is negative. Referring to GLAUERTS formula [10] we conclude 
that the shear stress for channel slip flow is lower than in the nonslip case. From this fact 
a reduction of ap I ay with increasing !; results and the velocity overshoot is diminished as 
the numerical analysis shows. 

For Re = 75, !; = 0 and Re = 50, !; = 0.03 we find the maxima in Fig. 3 changed 
to higher xlh values as compared with the Re = 50, !; = 0 curve. This is due to the fact 
that the boundary layer and the pressure gradient between channel wall and channel axis 
is developed slower with respect to xlh for higher Re-numbers and higher slip-coeffi­
cients. 
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The related overshoot in the velocity profiles of the flat plate Navier-Stokes solution 
is presented by several authors, e.g., GERKING [11]. The given explanation for this profile 
shape to be necessary in order to fulfill the continuity equation is often refused because 
of the infiniteness of the flow field in direction perpendicular to the flat plate direction. 
The results of this paper seem to favour the existence of the overshoot effect in the flat 
plate velocity profiles. 

The quantity K shown in Fig. 4 is equal to the pressure decrease with reference to entrance 
conditions minus that which would occur in the stated length for fully-developed parabolic 
flow 

(3.1) 
p-po 3 xfh 

K(x) = --=--- - - -- - - . eu; 1 + 3C Reh 

0.4 

103 
~ = 0 

K(x) 0.01 
0.015 
0.03 

0.2 0.19 
1.99 

Kn=O.Ol 

0 
0 0.1 0.2 0.3 

x---+ 

FIG. 4. 

This quantity can be considered as an entrance loss in terms of dimensionless pressure. 
First-order boundary layer theory neglects pressure gradients in y-direction and yields 
(SCHLICHTING (9]) 

C = 0: K(x--+ oo) = 0.301. 

Actually more work has to be done as the Navier-Stokes analysis shows; from this anal­
ysis 

C = 0: K(x--+ oo) = 0.385, 

C = 0.19: K(x--+ oo) = 0.163 
has been obtained. 

Numerical results for C = 0.19 and C = 1.99 are presented. These C-values can be 
obtained in the slip flow regime only if the tangential momentum accomodation coefficient 
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(TAC) is smaller than 1. Nature produces TAC-values of the order of unity. Because of 
advances in solid state physics activities have been started in order to reduce T AC's and the 
related friction drag by a special treatment of the solid surface. 

SEIDL and STEINHEIL [12] measured TAC's in the gold-helium system. After several 
cleaning procedures consisting of argon ion bombardement and vacuum annealing, the 
surface was almost completely cleaned and the TAC was reduced to below 0.1. From 
Fig. 4 the reduction of pressure drop gained by slippage can be obtained for the entrance 
region. Equation (3.1) yields the reduction of frictional drag for fully-developed parabolic 
velocity profiles. 

For TAC = 0.1 and Kn = 0.01, for example, the pressure drop reduction is highest 
near the entrance ( ~ 70%) and is lowered to ~ 36% in the Hagen-Poiseuille region. 
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