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On the dynamics of eddy viscosity models 
for turbulent boundary layers 

D. P. SUGAS TELIONIS (BLACKSBURG) 

IT HAS been recently attempted to extend the valitidy of existing phenomenological models of 
turbulent bounda1y layers to the time dependent flows. The present paper is concerned with 
generalizations and improvements on the mixing length model as recently developed by Cebeci 
and Smith. In particular, the damping factor is augmented to include dynamic pressure effects, 
a generalized displacement thickness is derived through a differential equation, etc. The system 
of differential equations is then integrated numerically in a three-dimensional space. The calcu
lations proceed marching in the direction of the two parabolic variables: downstream distance 
and time. The theoretical predictions are carefully compared with the only available experi
mental data, those of Karlsson. Oscillatory flows are examined and the phase advance or delay 
of various properties and, in particular, the skin friction are estimated. 

Ostatnio czynione byly pr6by rozszerzenia poprawnosci istniejqcych fenomenologicznych mo
deli przeplyw6w turbulentnych w warstwach przysciennych na przeplywy zalei:ne od czasu. 
Niniejsza praca dotyczy tych zagadnien, a przede wszystkim uog6lnienia i udoskonalenia mo
delu drogi mieszania Prandtla, kt6re ostatnio intensywnie badali Cebeci i Smith. W szczeg6lnosci 
rozszerzono wartosci wsp6lczynnika tlumienia celem uwzgl~dnienia efekt6w cisnienia dyna
micznego oraz wyprowadzono z r6wnania r6i:niczkowego uog6lnionq wielkosc przemieszcze
nia. Nast~pnie uklad r6wnan r6i:niczkowych scalkowano numerycznie w przestrzeni tr6jwy
miarowej. Obliczenia przebiegaly krok po kroku w kierunku dw6ch zmiennych paraboli
cznych- odleglosci wzdlui: linii prc:tdu i czasu. Wyniki teoretyczne por6wnano skrupulatnie 
z jedynymi dost~pnymi danymi doswiadczalnymi Karlssona. Zbadano przeplywy oscylujqce 
i oszacowano r6i:ne wlasnosci wyprzedzenia bc:tdi op6znienia fazowego, w szczeg6lnosci tarcia 
powierzchniowego. 

B nocJie,gHee BpeMH 6biJIH npe,gnpHHHThi nonhiTKH pacUIHpeHHH cnpaBe,gJiuBocru cymecrBy
JOJ..I.UiX QlCHOMCHOJIOrU'lleCKHX MO,geJieH Typ6yJieHTHbiX TC'llCHHH B norpaHU'llHhiX CJIOHX Ha 
Te'lleHHH 32BHCHll.{HC OT BpeMCHU. HaCTOHII~aH pa6oTa KacaeTCH 3THX BOllpOCOB, npem,ge BCero 
o6o6I.QeHUH U yCOBeprneHCTBOBaHHH MO,geJIU nyTH CMeUIHBaHHH IJpaH,gTJIH, KOTOpaH B no
CJie,gHee BpeMH HHTeHCHBHO 6bma uccJie,goBaHa Ue6e'llH H CMuToM. B 'llaCTHocru pacrnupeHhi 
3Ha'lleHHH K03QlQlHI.J;HCHTa 3aTyxaHHH c u;eJibJO y'lleTa 3QlQlCKTOB AHHaMU'llecKoro ,gaBJieHHH 
a TaKme H3 ,gu<P<PepeHu;uaJihHoro ypaBHeHHH BhiBe,geHa o6o6meHHaH BeJIH'lluHa nepeMeme
HHH. 3aTCM CHCTCMa AHQlQlCpCH;I.J;HaJibHbiX ypaBHCH;uH 'llUCJICHHO npomiTerpupOBaHa B Tpex
MCpHOM npocrpaHCTBe. PacqeThi npoBOAHJIHCh mar 3a rnaroM B HanpaaJieHuu ,gByx napa6oJiu
qecKux nepeMeHHhiX- paccroHHHH BAOJih JIHHHH TOKa H apeMeHu. TeopeTu'llecKUe pe3yJih
TaThi CTapaTCJlhHO CpaBHCHbl C CAHHCTBCHHbiMH ,gOCTynHbiMH 3KCnepUMCHTaJihHbiMH ,gaHHbiMU 
KapJicoHa. HccJie,goaaHbi ocu;uJIJIHpyromue Te'lleHrur u ou;eHKHhi pa3Hbie caowcraa <Pa3oaoro 
onepemeH;UH HJIU 3ana3,gbiBaHHH, B 'll2CTHOCTH llOBCpXHOCTHOrO TpCHUH. 

1. Introduction 

DEsPn E the criticism that phenomenological models of turbulence have received, it appears 
that today such models are the only available tools for engineering estimates of turbulent 
boundary layers and are extensively used in engineering design. Efforts in developing such 
heuristic and approximate models for turbulence were initiated quite early by Prandtl, 
von .K.arman and other well known aerodynamicists. In the last few years a few more models 
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have appeared, based on different assumptions and each was suggested as pertinent or 
remedying a specific drawback of the original idea (see review articles of REYNOLDS (1970)~ 
MELLOR and HERRING (1973) and LAUNDER and SPALDING (1974) ). It is the opinion of the 
author that some of these models may eventually prove to be more accurate and perhaps 
more widely applicable than the early rather simplistic models. However, it is felt though 
that the ability of the future computers and/or the development of theoretical stochastic 
approximations will soon render all phenomenological models obsolete. Until then and 
mainly for practical applications, it is necessary to improve and extend the existing approx
imate models. 

The present paper is an extension of work on the most simple model which is based 
on Prandtl's original mixing length idea. Despite its simplicity, this model, as later improved 
by VAN DRIEST (1956), CEBECI (1970) and others, has been shown to predict with very 
good accuracy a wide variety of flow situations. In fact, in a recent comparative study 
(see, e.g., BuRGGRAF (1974)) it was shown to compete very successfully with many other 
more sophisticated models. 

Most of the boundary layer calculations for laminar or turbulent flow have been con
fined for decades to steady two-dimensional incompressible flows over geometrically-simple 
body configurations. The value of such calculations was therefore rather qualitative. 
The evolution of the modern computer though has permitted the numerical integration 
of the differential equations for more general geometrical configurations and more complex 
flow conditions. Today such solutions can be used for design purposes in realistic aerody
namic applications. One of the most interesting areas of aerodynamics that appears to 
require immediate attention is the area of unsteady viscous flow and viscous-inviscid inte
raction. Laminar and turbulent unsteady boundary layer calculations have been attempted 
only in the last few years, as described in a recent review article (see, e.g., TELIONIS (1975) ). 
Most of the existing models of turbulent boundary layers have been extended to unsteady 
flow with varied success. CEBECI and KELLER (1972) and ABBOTT and CEBECI (1971) 
have extended the mixing length model. PATEL and NASH (1972), NASH, CARR and SIN
GLETON (I 973) and SINGLETON and NASH (I 973) have developed a scheme of unsteady 
turbulent flow calculations based on the turbulent energy equation. A similar method was 
developed by SHAMROTH and KRESKOVSKY (1974). DWYER (I 973) and later McCROSKEY 
and PHILIPPE (1974) worked out solutions with a quasi-steady model. These works were 
performed almost independently and, as a result, very little comparison of the results 
of different methods was attempted. Modest efforts to compare the relative success of 
a certain proposed model with others were reported in McCROSKEY and PHILIPPE (1974} 
and SHAMROTH and KRESKOVSKY (1974). Unfortunately there is very little experimental 
information on the problem. To the knowledge of the author the only works that report 
on unsteady turbulent layers are those of KARLSSON (1959) and MILLER (1969). The 
experiments of Karlsson were confined to oscillatory flow over a flat plate whereas those 
of Miller to heat transfer measurements. 

The present paper is a further extension of a model suggested in a previous publication 
by the author and one of his colleagues (see, e.g., TELIONIS and TSAHALIS (1975)). In this 
paper the reader will also find a more detailed account of previous publications on the 
topic. A two layer model for the eddy viscosity is adopted again here. In the inner layer-
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a generalized mixing length that incorporates in the well-known damping factor the effect 
of unsteadiness is assumed. It is pointed out that the original model as suggested by CEBECI 
and KELLER (1972) and later used by TELIONIS and TSAHALIS (1975) is incomplete. 
A correction that accounts for the dynamic effects on the wall shear is proposed. The ed
dy viscosity in the outer layers is based on the Clauser model but a generalized bound
ary layer thickness for unsteady flows according to MooRE and OsTRACH (1956) is used. 
The validity of the present model in the neighborhood of a point of zero wall shear and in 
regions of partially reversed flow is discussed. 

Numerical calculations were performed for flows oscillating over a flat plate. Similar 
calculations were performed for the first time using the eddy viscosity models of VAN 
DRIEST (1956), ALBER (1971), KAYS (1971) and CEBECI and KELLER (1972). All the numerical 
results were checked against the experimental data of KARLSSON (1959). 

2. The turbulent boundary-layer equations and a closure assumption 

Let u, v and x, y be the averaged velocity components and the coordinates parallel 
and perpendicular to the wall, respectively. Let Ue(x, t) be the outer flow velocity, t the 
time, e the density, p the pressure, and u', v' the instantaneous values of the velocity 
fluctuations. The turbulent boundary-layer equations then read 

(2.1) !!!__ + !!!__ = 0 ax ay ' 

(2.2) 
au au au 1 ap a2u a I 

-+u-+v- = ---+v----(uv), at ax ay (! ax ay2 ay 

(2.3) _ _!__ op_ = o Ue + Ue o Ue , 
e ox ot ox 

where the symbol () represents the ensemble average of the fluctuating quantities at the 
timet. We assume here that the Reynolds stress may be modeled again, for unsteady flow, 
via an eddy viscosity model whereby the quantity (u'v') depends linearly on the gradient 
of the mean velocity 

(2.4) (u'v') = soujoy. 
The eddy viscosity s is then defined for an inner and outer region as proposed by CEBECI 
and SMITH (1968) and later generalized for unsteady flow by CEBECI and KELLER (1972) 
and TELIONIS and TSAHALIS (1975). 

In the inner region it is assumed that 

(2.5) ei = ef21aujoyl, 
where I is Prandtl's mixing length and is here given by 

(2.6) I = k1y[l-exp(-y/A)]. 

In the above equation k1 is a constant which was empirically estimated to be equal to 0.41 
and A is van Driest's damping factor (see, e.g., V AN DRIEST (1956) ). In the outer region it 
is assumed that 

(2.7) 
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where k 2 = 0.0168, ~* is the displacement thickness and y is the intermittency factor 
given by 

(2.8) 2y = 1-erf [S(y/~-0.78)]. 

It should be emphasized here that the inner region form is assumed to hold in a layer 
much thicker than the viscous sublayer. The interface between the inner and outer layer, 
y = y0 , is defined by the equation ei(Yo) = e0 (y0). This arbitrary separation in two 
regions is not altogether unrealistic since the inner and outer regions so defined, roughly 
correspond to the regions visually observed by NYCHAS, HERSHEY and BRODKEY (1973). 

The formulation up to now follows closely the work of CEBECI and KELLER (1972) 
and TELIONIS and TSAHALIS (1975). However, in the present paper we would like to re·exa
mine the interpretation of the factors that appear in the above formulas. 

Consider first the damping factor A which is traditionally assumed to depend on the 
wall shear according to the empirical formula 

(2.9) 

where A+ = 26, uT is the friction velocity, uT= (rw/e)1
'

2 and rw is the skin friction, 
Tw = flau;ay at y = 0. Following the suggestion of CEBECI (1970), we assume that A 
depends on the shear evaluated at the edge of the viscous sublayer rather than the wall. 
This we find justified on physical grounds since the random oscillations that are damped 
according to the mechanism of a Stokes layer do not extend all the way to the wall but 
disappear at the edge of the viscous sublayer. 

In the immediate neighborhood of the wall we may approximate the momentum equa
tion by 

(2.10) 

In the above equation the convective terms have been omitted, an approximation justified 
for very small distances from the wall. The unsteady term auf at, in general is not small 
and its omission in previous publications is not justified. Integration of Eq. (2.10) and 
evaluation at y = Ys, the edge of the viscous sublayer yields 

(2.11) 
Ys 

( 
a ue a ue ) f au d + Ts= -e --- +U - - y + (! - Y Tw, 
at e ax s at 

· o 

where Ys = vy+ fuT and y+ = 11.8. In the present analysis therefore the eddy viscosity 
in the inner layer is assumed in the form 

(2.12) e, = ekfy' [ 1-exp(- :;: )ri ~;I· 
where us = ( Ts/(!) 112. Notice that the dynamic effects are influencing the eddy viscosity 
through the factor us which depends on the outer flow via Eq. (2.11). 

In the outer region the dynamic effects are introduced through the time dependence 
of the outer flow velocity Ue and the displacement thickness ~*. It has failed the attention 
of previous investigators that the common definition of the displacement thickness cannot 
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be carried over to unsteady flow. Insteady, we have adopted here the more general definition 
of MooRE and OsTRACH 1 (956). Reducing their general equation to its two-dimensional 
incompressible but unsteady form we arrived at: 

(2.13) a a J ob* - (b*U )--- (U -u)dy+-- = 0 ox e ox e ot . 

Notice that for steady flow the above equation reduces further to the familiar formula 
for the displacement thickness 

(2.14) b* = J (1-u/Ue)dy. 

3. The method of solution 

The differential equations were solved numerically for oscillating outer flows. A steady 
state solution was generated and used as an initial condition. The calculations were then 
carried out until a periodic oscillatory motion was achieved. More details on this technique 
can be found by the reader in previous publications [see, e.g., TSAHALIS and TELIONIS 
(1974), TELIONIS and TsAHALIS (1975)]. At the origin of the calculations a well-rounded 
leading edge was assumed and Hiemenz type laminar profiles were generated. Turbulence 
was assumed to be turned on immediately downstream of the origin. The experimental 
analogy is a boundary layer that is artificially tripped very near the leading edge. On the 
wall and at the edge of the boundary layer the boundary conditions are 

(3.1) u = v = 0 at y = 0, 

(3.2) u ~ Ue(X' t) at y ~ 00. 

In the present paper oscillatory flows over a flat plate were' considered 

(3.3) 

To incorporate the proposed refinements in the eddy viscosity formulas some assumpt
ions with regard to the term ouf ot within the viscous sublayer are necessary. It is assumed 
that the velocity in the viscous sublayer responds to the imposed outer flow according 
to the formula 

(3.4) u = u0 + tXU1 cos(wt + n/4). 

The phase advance is a familiar property of Stokes flow as well as laminar oscillatory flow 
(see, e.g., LIGHTHILL (1954) ). The functions u0 and u1 can be approximated by linear 
functions of y. Further, laminar calculations (see, e.g., TSAHALIS and TELIONIS (1974)) 
indicate that u0 ~ u1 is a fairly good approximation, if tX is the amplitude ratio of the outer 
flow. Our hypothesis then is that 

(3.5) ( 
ou(x' Y:tf i 

Uo x,y) = ul(x,y) = a I y . 
J' 1Y=O 

The shear at y = Ys from Eq. (2.11) can be written as follows: 

op au I y
2 

. 
(3.6) is= ax Ys-f!tXW -ay w 2 sm(wt+n/4)+ iw· 
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The numerical integration is performed in a Gortler space according to subroutines 
developed previously for laminar flow {see, E.G. TELIONIS, TSAHALIS, and WERLE (1973) ). 
New dependent and independent variables are defined 

(3.7) 

(3.8) 

~ = UCfJx, 'YJ = UCfJ(2~)- 1 '2y, r = t, 

F = uiU CfJ, V= (2~
112 

v+'Y}(/J -1)F, 
CfJ 

where {J = (2~ I Ue) o Ue I o~ and hence fJ = 0 for a flat plate. The continuity and momentum 
equations in terms of the new variables take the form 

(3.9) 

(3.10) 

where 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

1 2~ oUe 
a3 =-;;;- U2 U -~ - , 

e CfJ e ut 

2~ ue 
a4 = -----u F, 

s CfJ 

2~ 
as = - -u2' s CfJ 

where e is the dimensionless total viscosity given by 

(3.16) - s 
s = 1 +- . 

fl(! 

In previous publications of the author and his colleagues the reader will find detailed 
descriptions of the numerical integration of parabolic equations like Eqs. (3.9) and (3.10) 
in a three-dimensional space. 

4. Numerical results 

The present author and his colleagues have earlier compared the mixing length method 
with other unsteady turbulent boundary layer approximate methods of calculation {see, 
e.g., TsAHALIS and TELIONIS (1975) ). It was shown then that there is reasonable agreement 
in predicting wall quantities like the skin friction and its phase advance. In the same paper 
the method was tested against the experimental data of KARLssoN (1959). In the present 
paper we introduced refinements in calculating the shear at the edge of the viscous sublayer 
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and the displacement thickness as described in the previous section. We then performed 
calculations using the present model of the eddy viscosity for some characteristic cases 
of the experiments of KARLSSON (1959). The same calculations were repeated using the 
eddy viscosity model in its most simple form (see, e.g., VAN DRIEST (1956) ), as well as the 
models of KAYS (1971), ALBER (1971) and CEBECI and KELLER (1972). The last model, 
practically unaltered, is the one used in our previous publication. All of the theoretical 
results presented in this paper therefore were derived by our numerical scheme using the 
above mentioned models as well as the one presently proposed. For brevity and clarity we 
have marked the figures with the name of the first author of the publication in which the 
respective model was originally proposed. Namely: V AN DRIEST for the most simple quasi
steady model of VAN DRIEST (1956), KAYS and ALBER for the models of KAYS (1971) 
and ALBER (1971) and CEBECI for the model of CEBECI and KELLER (1972). The reader 
should be cautioned to the fact that the result presented in the figures have not been repor
ted previously in the above-mentioned papers. The eddy viscosity formula in terms of our 
transformed variables and according to the above models becomes 

VAN DRIEST: 

(4.1) s, = l+R!t2_U~ooe k[Jl-exp[- (2~Rftt4 ( Ue oFj )t/2r;]}2(2~)tt2r;2 oF, 
) A U oo or; iw O'YJ 

where A+ = 26. 
CEBECI: 
Same as Eq. (4.1) but with 

(4.2) + _ [ (2~)314 ( oF I )- 3

'

2 
( aue aue )] 

A -26 1-11.8 R; 14 UeUoo or; w -at+Ue----a;- · 

KAYS: 
Same as Eq. (4.1) imt with 

(4.3) 

where 

(4.4) + _ (2~) 1 '2 (_!!_I )- 312
(!!!_e__ aue) p - R Ue U oo 0 0 + Ue a , 

e 'Y} w t X 

(4.5) 
!t (p+) = 1133p+ if p+ ~ 0.012, 

!t (p+) = 2133p+ -12 if p+ ~ 0.012. 

ALBER: 

(4.6) ei = 1 +0.018 [2~Re(Uer;/U00)2]1 12 

• 1-exp - R1f4(2~)3/4 _!]_ - - __ e - U __ e 
{ [ ( )

3

'

2 1 ( au au )
1

'

2

}

2 

e uef:) 26 at e ax 
One of the most characteristic features of the flow is the response of the velocity profiles 

to the fluctuations of the outer stream. For an outer flow that fluctuates harmonically 
according to Eq. (3.3), we have calculated the fluctuating parts of the velocity within the 
boundary layer. Values of the dimensionless velocity component, F, were stored for a whole 
period, the average, F, and subsequently the fluctuating part, F-F, were calculated. 

19 Arch. Mech. Stos. 5-6/76 
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The fluctuating part is a periodic function of time but due to the non-linear character of the 
equations, it is not necessarily a harmonic function. To demonstrate clearly its character 
and compare with KARLSSON's (1959) measurements, it was resolved into two components, 
one in phase with the outer flow, u10 , and one at a phase of 90° with the outer flow 

(4.7) UJn(X, y) = 
21'2[F(x, y,-t)-F(x, y, t)]coswt 

2112 [F(x, y, t)- F(x, y, t)]cos(wt + n/2) 
Uout(X, Y) = ---------===--------

(cos2wt)112 
(4.8) 

In Figs. 1 to 3 we have plotted the functions u10 and Uout for ~ = 1.00 and for various 
frequencies and amplitudes. Figure I represents the lowest frequency f = w f2n = 2 Herz 

• • 
1.0 • • • 
0.8 

--VAN DRIEST 

0.6 --- CEBECI 

-·-·- PRESENT METHOD 

0.4 -··-··- ALBER 

0.2 

5 2 3 

y(in) 

FIG. 2. In-phase and out-of-phase velocity 
profiles for a. = 0.136 and f = 4 Herz. 

1.0 

0.8 

0.6 

0.4 

0.2 

FIG. 1. In-phase and out-of-phase velocity 
profiles for a. = 0.147 and f = 2 Herz. In all 
figures circles represent the experimental data 

of KARLSSON (1959). 

-- VAN DRIEST 

--- CEBECI 

--- - ~PRESENT METHOD 

UouT 
- 0.2 ._ _ _,__ _ __._ _ __._ _ ___,~_....__ _ __._ _ __, 

0 .5 2 3 

y(in) 
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0.8 

0 .6 

0.4 

0.2 

VAN DRIEST 

CEBECI 

PRESENT METHOD 

ALBER 

1005 

-0.2 ..___ _ _.__ _ _.__ ___ _..._ ___ ___..__-J 

FIG. 3. In-phase and out-of-phase velocity pro
files for ex = 0.127 and f = 7.65 Herz. 

0 5 2 3 

y(in) 

for an amplitude ratio rx = 0.147. In this figure it appears that Alber's model is most 
successful in predicting the function u 1n but seems to be failing in predicting Uout properly. 
All methods fail to predict the velocity overshoot and a very mild improvement is shown 
with the present method as compared to our previous calculations. In Fig. 2 results are 
shown for the frequency f = w /2n = 4 Herz. All models appear to predict, at least quali
tatively, a smaller thickness of the unsteady part of the velocity profile but still fail to predict 
a peculiar growth of the function Uout at distances 1" < r < 3". This phenomenon is absent 
from similar experimental or theoretical results of laminar flows (see, e.g., TELIONIS 
(1975) ). Figure 3 shows the same functions for a frequency off= 7.65 Herz. A careful 
study of the experimental data indicates that the function Uout seems to turn sharply down
ward and tends to zero as the wall is approached. There is no theoretical justification for 
this phenomenon but the trend seems to be definite if one observes carefully the data for 
a whole spectrum of frequencies which KARLSSON (1959) has covered experimentally. 
The present method appears to be the only method that shows, qualitatively at least, the 
same trend. 

The experimental data of KARLSSON (1959) were previously used (see, e.g., TELIONIS 
and TsAHALIS (1975)) in order to estimate the phase angle 

(4.9) </J = arctan (uout/Uin). 

The experimental points in the figures that follow are not reported by KARLSSON (1959) 
as. such but were calculated from his data on uin and Uout. In Fig. 4 the experimental points 
for f = 2 are very dispersed and no definite conclusions can be drawn. Figures 5 an·d 6 
present the theoretical and experimental results for the frequency f = 4 Herz and two 
different amplitude ratios, rx = 0.136 and rx = 0.062, respectively. The dispersion ofthe 
experimental results is again unacceptable. In the outer part of the boundary layer the 
experimental data seem to be more reliable, yet they contradict each other by showing 
a phase advance and a phase delay for the two amplitudes considered, respectively. In Fig. 
7 it appears that the experimental data are more uniformly ordered and, unfortunately~ 

19* 
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rG. 4. The phase angle profile for <X= 0.147 and I= 2 Herz. 

--- VAN DRIEST 

--- CEBECI 
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ALBER 
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FIG. 5. The pha5e angle profile for <X = 0.136 and I= 4 Herz. 
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.I .2 .4 .5 
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1.0 
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FIG. 6. The phase angle profile for <X = 0.062 ad I= 4 Herz. 
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25 
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20 
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FIG. 7. The phase angle profile for rx = 0.127 and I= 7.65 Herz. 

VAN DRIEST 
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0 .I .2 .3 .4 .5 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 24 
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FIG. 8. The phase angle profile for rx = 0.127 and I= 20 Herz. 

1007 

very poorly predicted by all the available methods. It seems that perhaps ALBER's (1971) 
model is the most successful. In Fig. 8 we have expanded the abscissa in order to show 
in more detail the behavior of the various models for f = 20. This was the largest frequency 
for which we were able to carry out calculations and unfortunately there is no available 
experimental data in the neighborhood of this frequency. ALBER's (1971) method seems 
now to retain its character, and in fact exagerates it to the point that it seems rather unlikely 
that the flow would follow such a behavior. 

In Figs. 9 and 10 we have plotted the response of the derivative oFf O'YJ which is propor
tional to the wall shear. In both figures a harmonic function in phase with the oscillations 
of the outer flow is shown. The three tested methods do not seem to predict any large 
variations for f = 2 Herz (see Fig. 9). A small phase advance and the asymmetry of the 
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PRESENT METHOD 
-4L---~--~---L--~--~----L---~--~---L--~--~L_~ 

3/2 2 5/2 3 

T 
FIG. 9. The derivative oF/on as a function of time for (X = 0.147 and f = 2 Herz. 

oF 2 

07] 0 
VAN DRIEST 

-2 CEBECI 
PRESENT METHOD 
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FIG. 10. The derivative 8FforJ as a function of time for ~X = 0.127 and f = 7.65 Herz. 

periodic functions are clearly detectable. In Fig. 10 and for f = 7.65, the differences are 
more pronounced. The Cebeci-Keller model appears to predict much larger phase advances. 
The experimental evidence in this case is rather inconclusive. This may be due to the ina
bility of hot wire anemometry to measure velocities in the immediate vicinity of the 
wall. 

5. Conclusions and recommendations 

In the present paper we have collected the most well-known methods that are based 
on refinements of the mixing length concept and performed calculations for oscillatory 
flows over a flat plate. A few improvements on the Cebeci-Smith model were also included 
and the results were reported as "present method". The improvements consist of a correc
tion in calculating the shear at the edge of viscous sublayer and a new definition of the 
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displacement thickness. The two quantities appear in the inner and the outer model of the 
eddy viscosity, respectively. For the inner model a few assumptions had to be made with 
regard to the fluctuations of velocity within the laminar sublayer. Normally a larger 
number of calculations would have been performed, to indicate what values of the constants 
involved would provide better matching with the experimental results. This has not yet been 
attempted. Of the two refinements the first appeared to play a much more important role. 

Calculations were performed only for a flat plate. The flow therefore never approached 
the neighborhood of zero shear. The present model though can be used without any altera
tions in order to integrate through a point of zero skin friction and into a region of partial
ly-reversed flow. This has been done before with the Cebeci-Keller model (see, e.g., 
TELIONIS and TSAHALIS (1975) ). 

The reader may have noticed that there is an abundance of theories and predictions 
but very little experimental information available. This fact is disheartening especially 
since all the phenomenological models rely on experiment in order to estimate some of their 
arbitrary constants. All the efforts up to now, icluding the present, were confined in pro
viding extensions of the existing models, based on theoretical arguments. As a result all the 
arbitrary constants or functions involved were carried over from comparisons with steady 
flows. At this point it is felt that more experimental data and perhaps more accurate ones, 
are badly needed. Certainly, more data for flat plate flow can be useful since none of the 
methods of calculation have been proved to be successful even in this oversimplified case. 
Then, of course, it will be necessary to have some experimental information on flows with 
mild or strong pressure gradients, flows with separation and flows that would involve 
regions of partially reversed flow. 
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