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Non-linear waves in gases with weak influence of relaxation 

H. BUGGISCH (DARMSTADT) 

NEw simplified equations for the propagation of one-dimensional unsteady and two-dimensional 
steady waves in a relaxing gas with one internal degree of freedom will be derived, which are 
approximately valid if the wave amplitude is relatively small and if the influence of relaxation 
remains weak. The influence of relaxation is weak if either the difference between the frozen 
and equilibrium speeds of sound is small or if the typical frequency involved is large or small 
as compared to 1/r, -r being the relaxation time. 

W pracy badano rozchodzenie si~ fali jednowymiarowej niestacjonarnej i dwuwymiarowej sta· 
cjonarnej, uwzgl~dniaj~c zjawiska relaksacji, w gazie o jednym wewn~trznym stopniu swobody. 
Otrzymano uproszczone r6wnania propagacji przy zaJoi:eniach, i:e amplituda fali jest stosunkowo 
mala oraz i:e wpJyw relaksacji jest nieznaczny. Ten ostatni warunek jest spelniony w dw6ch 
przypadkach: 1) gdy zamroi:ona i r6wnowagowa pr~kosc diwi~ku r6i:ni'l si~ nieznacznie, 
2) gdy cz~stosc charakterystyczna jest dui:a (lub mala) w por6wnaniu z 1/r:, r:- czas relaksacji. 

B pa6oTe uccne~osauo pacnpocrpa~eRHe OA~OMep~oH ~ecraquoHapaoH H AByxMep~oH CTa­
quoaapHoH BOJIH, ytiHTbiBaH HBJieHHH pemm:caquu B ra3e C O~OH BHyTpeHHeH CTenem.ro 
cso6oAhi. Ilonyt:~~hi ynpom~hie ypas~eHHH pacnpoCTpaH~, npu npeAOonomemmx, 
t:fTO aMUJIHTYAa BOJIHbl cpaBHHTeJib~O MaJia, a TaiOI<e, t:fTO BJIWIHHe pemm:caquu He3~at:IHTeJib­
HO. 3To nocneAHee ycnosue YAOBJieTsop~o B AByx cnyqamc: 1) KOrAa BMopo>KeHHaH H pas­
aoseCHaH CKOpOCTH 3ByKa OTJIHqaiOTCH He3Hat:fHTeJibHO, 2) KOrAa xapaKTepHCTHt:feCKaH qaCTOTa 
6oJibme (HJIH Mana) no cpas~~HIO c 1/r:, r:- speMH penaKcaqHH. 

1. Introduction 

THE AJM of this paper is to develop a general algorithm which would allow to derive 
simplified equations for a gas flow with relatively small amplitude and with weak influence 
of internal rate processes. 

To fix ideas let us assume the gas to be a mixture of chemically reacting components. 
In slow flow the chemical composition is always in equilibrium with pressure and entropy. 
Hence, the fields of pressure and entropy suffice for a description of the thermodynamic 
state of the gas mixture, and the equations of classical gasdynamics are valid. However, 
for rapid flows, and therefore rapid changes of the thermodynamic state, the chemical 
reactions lag behind the changes of pressure and entropy. Then, at least one internal state 
variable q has to be introduced, and the equations of relaxing gas dynamics describe the 
flow. If the gas is a mixture of two chemically reacting species, q might be the mass con­
centration of one of the species. The lag of q behind its equilibrium value q (p, s) satisfies 
a relaxation equation which, for most applications, may be written in the well-tested form 

(1.1) 
Dq q-q(p, s) 
Dt = - -r:(p, s, q) . 
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1058 H. BUGOISCH 

In this equation p is the pressure and s the specific entropy. D I Dt denotes the material 
time derivative, and r is the relaxation time. In chemically reacting gases the equilibrium 
value q(p, s) of the internal state variable q may be computed from the law of mass action. 
In many cases the flow of the relaxing gas differs only slightly from the flow of an associa­
ted non-relaxing gas. Let us define a dimensionless parameter () > 0 as a measure of that 
difference. If () is small, we shall say that the influence of relaxation on the flow is weak. 
For slow flow in which the time scale T of typical pressure changes of the particles is large 
as compared with a characteristic relaxation time r 0 , the small parameter () may be de­
fined by 

be = To/T ~ I. 

In this case the associated non-relaxing gas flow is the equilibrium gas flow. For rapid 
flow, in which the internal state variable does not change considerably (nearly frozen 
flow), the small parameter () may be defined by 

()I= T/r0 ~ I 

and the associated non-relaxing gas flow is the completely frozen gas flow. Finally, the 
effects of relaxation are also small if the energy or, equivalently, the enthalpy of the gas 
depends only weakly on the internal state variable. In that case the difference between 
the frozen and equilibrium values of sound speed, b and a, is small and one can define (j by 

Here again the completely frozen gas flow may be chosen as an associated non-relaxing 
gas flow. In this paper we shall try to present a theory which can be applied to each of the 
three cases, be ~ 1 , Cl1 ~ 1 and Cl, ~ I , simultaneously. 

Unfortunately, the smallness of () alone does not suffice to simplify the equations of 
gasdynamics considerably. But if, in addition, the amplitude e of the flow is also small, 
so that non-linear effects can be taken account of with sufficient accuracy in an E

2
-

approximation, great simplifications of the equations can be achieved. The main reason 
for this is that gas flows with small () and E are approximately isentropic. Since we neglect 
the effects of viscosity, heat conduction and diffusion ,entropy is produced only by relax­
ation processes and in discontinuous (frozen) shocks. The entropy produced by relaxation 
vanishes with & 2

• In shock waves of the dimensionless amplitude e ~ I , the entropy 
produced is of the order e3

. Hence, entropy changes can be neglected if terms of the order 
e3 and & 2 are neglected. 

One may suspect that substantial simplifications of the equations for small amplitude 
gas flow with weak influence of relaxation are possible if one considers the following well­
known examples: Unidirectional waves of small amplitude e in relaxing gases are governed 

by "Burger's equation" [1 , 2] if the gas is always nearly in equilibrium, that is, if be ~ I ; 
by a high frequency approximation due to DuNWOODY [3], if the gas is always close 

to the completely frozen state, that is, if Cl1 ~ 1 ; 
by an equation which was first derived by OcKENDON and SPENCE [4, 5] for gases with 

small difference of the speeds of sound, that is, with Cl, ~ 1 . 
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NON-LINEAR WAVES IN GASES WITH WEAK INFLUENCE OF RELAXATION 1059 

In what follows we shall try to develop a quite general algorithm which would a11ow 
to derive, apart from the equations already mentioned, a host of other simplified equations 
for a gas flow with weak influence of relaxation. 

2. Outline of the algorithm 

To make the following arguments clearer, let us first call back to our minds classical 
gasdynamics, that is the dynamics of non-relaxing gases. In this case we have the following 
set of balance equations (note that within an e2 approximation the flow is isentropic; 
knowing this we can overlook the energy balance): 

(2.1) 
momentum balance (3 scalar equations), 
mass balance (1 scalar equation) 

for the following unknown fields 

velocity 
pressure 
density 

u(yi, t) 
p(yh t) 

e(yi, t) 

(3 scalar fields), 
(1 scalar field), 
(1 scalar field). 

Here, t is the time and the Yi are coordinates, fixing the position of the particles. The Yi 
may, e.g., be Cartesian coordinates in a fixed frame of reference. In this case we shall write 
Yi = xi. In a one-dimensional flow it is useful to identify y with the Lagrangean coordinate 
X which is defined by 

X 

X= _I_ f e(x, t)dx, 
eo 

oc 

Xo(t) being the position of an arbitrarily chosen particle and eo a constant reference density. 
Obviously, the number of unknown fields exceeds the number of balance equations 

by one. But, if we add the isentropic equation of state 

(2.2) 

the number of equations suffices to solve the problem, provided appropriate initial and 
boundary conditions are given. 

Often it is useful to reduce the set of equations (2.1), (2.2) to one higher order equation 
for one unknown field. Let us denote the unknown field to be chosen by 1p and let us write, 
symbolically, the differential equation for 1p in the following form: 

c (1p) = 0. 

For a one-dimensional flow, for instance, one may choose y = X and 1p = p and eliminate 
the velocity u and the density e from the equations. The result of this elimination process 
is the equation 

for the pressure p. Here, 

A(p) = _g_a(p) = _f_(defdp)-112 
(!o eo 
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1060 H. BUGGIISCH 

is the speed of sound with respect to X. Since X is a material coordinate, we will term 
A(p) the "material speed of sound". 

After this reminder of classical gasdynamics let us turn back to relaxation gas dynamics. 
As we have already mentioned, changes of entropy in relaxing gases are of the order E

3 

and E2 6. Since we intend to neglect terms of this order, we can neglect changes of entropy 
as we have already done in the case of classical gasdynamics. Comparing the equations 
of classical gasdynamics and relaxation gasdynamics we observe that we have one 
additional unknown field, namely, the field q(y;, t) of the internal state variable. But we 
also have an additional balance equation, namely, the relaxation equation (1.1). Further, 
the equation of state (2.2) is to be replaced by 

(2.3) e = e<P, q). 

To make the following arguments clearer let us assume for the moment that the field 

q = q~(Yh t) 

of the internal state variable is already known. Then, we can forget the relaxation Eq. 
(1.1) and replace Eq. (2.3) by 

(2.4) e = e(p, q*(yj, t)) = e*(p, y;, t). 

The flow field may now be computed from the set of balance Eq. (2.1) and the equation 
of state (2.4). Obviously, the only difference between this system of equations and the 
equations of classical gasdynamics is that Eq. (2.2) has been replaced by Eq. (2.4). If we 
go again through the same elimination process, as we did in classical gasdynamics (carefully 
paying attention to the fact that e* now depends explicitly on Y; and t) we must end up 
with a differential equation of the form 

R(VJ, q*(y;, t)) = 0. 

Finally, let us drop the assumption that q is a given function of Y; and t. Then, obviously 
the system 
(2.5) R (VJ, q) = 0, 

(2.6) 
Dq q-q(p, s0 ) 

Dt = - r(p, s0 , q) 

governs the flow. For one-dimensional waves, for instance, we choose y = X, V' = p. 
Equation (2.5) reads in this case 

(2.7) R(p, q) = -(B- 2 (p, q)pr)r+Pxx +e5((e- 1)qqr)r = 0, 

whereas Eq. (2.5) can be written in the form 

oq(X, t) 
at 

q-q(p, So) 
r(p, S 0 , q) · 

In Eq. (2.7), B = be/eo = ( o{!jop)- 112 eleo is the material frozen speed of sound. 
The set of Eqs. (2.5), (2.6) is useful only if r(p, s0 , q) and q(p, s0 ) can be expressed in 

terms of q and of V' and its derivatives: 

r = i(VJ, oVJfoyi, alp; at, ... , q), 

q = q(VJ, 8VJfoy1 , oVJ/ot, ... ). 
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NON-LINEAR WAVES IN GASES WITH WEAK INFLUENCE OF RELAXATION 1061 

This is clearly the case if 'P is a thermodynamic state variable. Furthermore, it is sometimes 
possible if 'P involves the velocity. To give an example let us consider steady irrotational 
flows (*). 

In this particular case it is useful to identify 'P with the velocity potential <P (x 1 , x2 , x3 ) 

of the flow. Now, in steady flow the energy balance can be integrated, the result being the 
relation 

(2.8) 

between the velocity u = grad<f> and the enthalpy h"(p, q, s) of the gas. In our case, the 
flow is isentropic: s = s0 • Hence, we can use Eq. (2.8) to compute pin terms of q and the 
components o<f>foxi of u, the result being 

p = p(q, o<f>foxi). 
Inserting this in -r(p, s0 , q), we get Tin terms of q and o<f>foxi. Similarly, using the thermo-

" dynamic relation (law of mass action) hq(p, ij, s) = 0, we obtain 

(2.9) hlp(q, o<f>foxi), q, So) = 0 

from which we can compute q in terms of the velocity components o<f>foxi. 
The aim of the next steps is to reduce the two Eqs. (2.5), (2.6) to one equation for 'P· 

Since the influence of relaxation is weak, (J being a small dimensionless parameter measuring 
this influence~ there must exist a non-relaxing gas flow such that 

(2.10) R(VJ, q)-Ca{1p) = 0(<5), 
where 

Ca('P) = 0 

is the differential equation for 'Pin the associated non-relaxing "classical" gas flow. In slow 
flow (<5e ~ I) we identify Ca('P) = 0 with the equation for 'Pin equilibrium flow: 

Ca('P) = R(1p, q(1p, OVJfoyi> oV'fot, ... )). 
The left hand side of Eq. (2.IO) vanishes with (Je in· this case, since the difference between 
q and ij vanishes with (Je. If the flow is nearly frozen (<51 ~ 1), the associated flow is the 
completely frozen flow and we choose 

Ca(V') = R{1p, qo). 

The left hand side of Eq. (2.10) vanishes with <51 in this case, since (q-q0 ) vanishes with 
<51 . Finally, if the difference between the frozen and equilibrium speeds of sound is small 
(<5, ~ I), the operator Ca may be identified either with R(1p, q) or with R{tp, q0 ). Let us 
choose in this case 

Ca(V') = R(1p, qo). 

The left hand side ofEq. (2.IO) vanishes with <5, in this case, since the dependence of R(1p, q) 
on q vanishes with <5,. Note that in each of the three cases be ~ 1, <51 ~ 1 and <5, ~ 1, 
Ca is of the form 

Ca('P) = R(VJ, q4 (tp, otpfoyi>otpfot, ... )), 
where qa = q if <5e ~ 1 and qa = q0 if <5/ ~ I or <5, ~ 1 . 

(*) Note that, due to the fact that o and s are small, it follows from the Croccos theorem that the 
flow is irrotational for all times, if it was so initially. 
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Let us take as an example the one-dimensional unsteady flow of a relaxing gas. In this 
case, from Eq. (2. 7) we get 

(2.11) R(p, q) = -(A- 2(p)p,)t+Pxx, 

(2.12) 

where A(p) = (e/e0 )a = {B- 2 -e~(e- 1)qlq=qqp} - 112 has the meaning of the material 
equilibrium speed of sound. 

Next, let us make use of the fact that the amplitude e, by which the flow differs from 
a reference flow, is small. We assume that the reference flow is a parallel flow with constant 
velocity U0 of a gas, which is homogeneous and in thermodynamic equilibrium. Let the 
values of "P and q in the reference flow be "Po and q0 = q0 , respectively. Note that as a 
consequence of these properties, the reference flow is simultaneously a possible flow of 
both the relaxing gas and the associated non-relaxing gas: 

R (VJo,-qo) = 0, 

R{VJo, qa{VJo, OVJofoyh ... )) = 0. 

Therefore, R(VJ, q)- R(VJ, qa) does not only vanish with <), but also with the amplitude e: 

R (VJ, q)- R(VJ, qa) = O(e) · O(<)). 

Since we neglect terms of order, e2 b, R(VJ, q)- R(VJ, qa) may be simplified, linearizing 
in (q-qa) and its derivatives: 

( 
bo-ao 

(2.13) R(VJ, q)-R VJ, qa) = bo L(q-qa), 

where Lis a linear differential operator. Due to the fact that the reference flow is a steady 
parallel flow of a homogeneous gas, the coefficients of L are constant. Note that 

bo-ao L( ) -b-- q-qa 
. 0 

vanishes both with b and e. If be ~ 1 or (Jf ~ 1, this is true, because (q-qa) vanishes 
with be. If br = (b0 -a0 )/b0 ~ 1, it is also true, since then the dependence of R on q 
vanishes with lJ, while (q-qa) vanishes with e. To stress this fact, we have taken the factor 
(b0 - a0 ) I b0 out of the linear operator L. Making use of Eq. (2.13) we can rewrite Eq. 
(2.5) in the form 

(2.14) 

The next few steps will be made separately for the cases lJ1 ~ 1 or <)r ~ 1 and <)e ~ 1 , 
respectively. To make the following arguments clearer, let us introduce for the moment 
a dimensionless time t* by 

t* = t/T, 

where T is the time scale of typical pressure changes for the particles. Then, the relaxation 
Eq. (2.6) may be given in the form 

T To Dq _ 
(2.15) T;;T Dt* = -(q-q). 
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Note that, due to the particular choice ofT, Dq/Dt* and D1pjDt* are, at the most, of the 
order e, whereas, by definition, T/T0 = ~~ ~ I for nearly frozen flow, and T0 /T = ~e ~ I 
for very slow flow. Further, let us denote the linearized form of the material time derivative 
by D0 /D0 t*. Since the reference flow is a steady parallel flow, D0 /D0 t* commutes with the 
operator L. ·-

Let us now reduce the two Eqs. (2.14) and (2.15) to one equation for VJ, first taking 
the case in which either (b0 -a0 )/b0 = ~, ~ 1 or T/T0 = ~~ ~ I. In both cases we have 
chosen qa = q0 • If we apply the operator D0 /D0 t*+T/T0 to Eq. (2.14) we get, taking 
advantage of the fact that the operators Land D0 /D0 t* commute, 

( 
Do T ) bo- ao ( Do q T ) --* +- R(VJ, q0 )+ L --*- + -(q-q0 ) = 0. 

D0 t To b0 D0 t To 

Now, in both cases d, ~ 1 and d1 ~ 1, the term bo~ao L( ~:~~) differs only by terms 

of order t 2 d from bo ~ 00 
L ( :. -%tq* ) . Therefore, in both these cases we can write, using 

the relaxation Eq. (2.15) 

D0 T { bo- Oo - } 
Dot* R(VJ, qo)+ To R (VJ, qo)+ ~- L(q-qo) = 0. 

According to Eq. (2.13), the second term of this equation equals T/To · R(VJ, q). Therefore, 
transforming t* back to the dimensional time t, we arrive at the following result: 

(2.16) To DDo R(VJ, q0)+R(lp, q) = 0. 
ol 

Next, let us show that the same equation also holds, if ~e ~ I. In this case we apply the 

operator ( r 0 /T :.~*+I) to Eq. (2.14), what leads to 

Within an error of order e2 ~e' we have 

To D0 _ To T D _ _ To D0q 
--- -- (q-q) = ---(q-q) = -(q-q)- -T · D

0
t*. 

T D0 t* T To Dt* 

Therefore, 

To D0 - b0 -a0 ( To D0 _ ) _ 
T D

0
t* R(VJ, q)+~ L - T Dt*(q-qo) +R(tp, q) = 0 

from which, using Eq. (2.13) we get 

To Do -T Dot* R(VJ, qo)+R(lf', q) = 0. 

Going back to the dimensional timet we find again Eq. (2.16). 

23 Arch. Mech. Stos. 5-6!76 

http://rcin.org.pl



1064 H. BUGGISCH 

Finally, let us sum up the conditions used and the results which have been obtained. 
The conditions, which allow for considerable simplifications of the equations, are the fol­
lowing: 

1. Effects of viscosity, heat conduction and diffusion can be neglected. 
2. The gas has only one internal state variable. 
3. The relaxation equation is of the form Dq/Dt = -(q-ij(p, s))fr(p, q, s). 

4. The influence of relaxation is weak and the amplitude, by which the flow differs 
from a reference flow, is small; terms of order t: 3 and t: 2 !5 are neglected. 

5. The unperturbed reference flow of the gas is a steady parallel flow of the homogeneous 
equilibrium gas. 

If these conditions are satisfied, the following algorithm can be employed to derive a 
simplified equation for a field variable 1p which we choose: 

I. Derive the differential equation R(1p, q) = 0, eliminating the other field variables 
from the balance equations, taking advantage of the fact that the flow is nearly isentropic. 

2. Express the equilibrium value q of q in terms of 1p, 81pj8yi, 81pj8t, · .... Derive the 
differential operators R(1p, q) and R(1p, q0 ). 

Remark: R(1p, q) = 0 and R(1p, q0 ) = 0 are the differential equations for 1p in 
strict equilibrium flow and strict frozen flow, respectively. 

3. Then, r 0 DDo R(1p, q0)+R(1p, ij) = 0 is the simplified differential equation for 1p 
ol 

in the relaxing gas flow, where r 0 = r{p0 , s0 , q0 ) is the relaxation time in the reference 
state of the gas, and where D0 /D0 t is the linearized material time derivative. 

3. Examples: One-dimensional UDsteady flow 

Let us, finally, apply the algorithm to some special gas flows. For one-dimensional 

small amplitude flow we have already derived expressions (2.11) and (2.12) for R(p, ij) and 
R{p, q0 ), respectively. Therefore, the algorithm leads to the following equation for the 
pressure: 

(3.1) 

This equation is asymptotically correct in each of the three cases !5e ~ 1 , !51 ~ I and 
lJr ~ 1. 

We will term a wave p(X, t) a "right-running" wave if 

(3.2) p =f(X-Vt, t) =f(~, t), 

where a typical value of of(~, t)fot is smaller by a factor of the order of 15 than a typical 
value of offo~. We expect that Eq. (3.1) allows for right-running waves as solutions. The 
material speed V> 0 of these waves should be approximately 

V= A if 

V= B if 
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In the case of a small difference of speeds of sound, ~, ~ 1, we may choose either V= A 
or V = B. To be definite, let us take 

V= B if b, ~ 1. 

Inserting Eq. (3.2) into Eq. (3.1) and neglecting higher order terms, we obtain, after some 
straightforward manipulations, 

(3.3) To ;t {Pr+B(p)px}+ {Pr+A(p)px} = 0, if ~r ~ 1, 

(3.4) p,+A(p)px- ~ ToA~(1-~:}Pxx = o, if ~. ~ 1, 

1 B5-A6 
(3.5) Pr+B(p)px+-

2
- - A2 (p-po) = 0, if ~~~I. 
To o 

Equation (3.3) is essentially the equation of OCKENDON and SPENCE [4]. Equation (3.4) 
is the BuRGER's equation [1, 2] for low-frequency waves and (3.5) is the well-known 
kinematic wave equation which governs high-frequency processes (see, e.g., B ECKER [5]). The 
kinematic wave Eq. (3.5) can be used, for instance, to study acceleration waves. 

4. Examples: Two-dimensional steady flow 

In a similar way the algorithm leads to the following equation for small amplitude two­
dimensional irrotationa/ steady flows: 

(4.1) Uo To-:- { (1-(/J'iJb 2 )c/Jx1x1 +4>x2x2 - 2c/Jx1x2 c/Jx 1 c/Jx2 fb 2
} 

uxl 

{ (1-~ i)a2
) 4>x1x1 + c/Jx2x2 - 24>x 1x2 c/Jxl c/J xzfa2

} = 0 • 
In this equation x 1 and x 2 Cartesian coordinates, cjJ is the velocity potential and U0 

is the speed of the unperturbed reference flow which is in xrdirection. The frozen and 
equilibrium speeds of sound, b(p) = (oe(p, q0 )jop)- 112 and a(p) = (de(p, q(p))fdp)- 112, 

can be computed as functions of cp;~, c/Jx
2

, making use of the Eqs. (2.8) and (2.9). Equation 
(4.1) is again correct in each of the three cases ~e ~ 1, ~~ ~ 1, ~r ~ I. It can be used, for 
instance, to -study the flow around a slender profile. Its classical counterpart can be found 
in many text books (see, e.g., [6, 7)]. 

If the difference of speeds of sound is small ( b, ~ 1 ), Eq. ( 4.1) may be simplified further 
for trans-sonic flow. This is due to the fact that in the trans-sonic flow of a gas with (b0 -

-a0 )/b0 ~ 1 both the frozen and the equilibrium Mach number 

M10 = U0 /h 0 and Meo = U0 /a0 

of the reference flow are close to one, and both the frozen and equilibrium characteristics 
are nearly parallel to the x2-axis. Using these facts we get, after some straightforward 
manipulations, 

ho To-1-- { (1- M}o) c/Jx1x1 +c/Jx2x2 -2(1 + (!obobb) (c/JxJbo- M,o)c/Jx 1xJ 
ux1 

+ {(1- Mio) c/Jx1 x1 +c/Jx2x2 -2(1 +eoaoa~) (c/Jx)ao-Meo) c/Jx 1xJ = 0, 

where b~ is the following derivative of b(p): 

b~ = (dbfdp)!P=Po 
and where a~ is defined similarly. 

23* 
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1066 H. BUGGISCH 

Steady right-running wares are the steady two-dimensional equivalent of unsteady 
one-dimensional right-running waves discussed in the previous chapter. If ~, ~ 1, such 
wa.ves are governed asymptotically by the equation 

Uo To-
8
8 

{</>x 1 +</>x)JI M}o -1 +</>i1 (1 +eobob~)Mjo/(2Uo(M}o -1))} 
Xt 

+ {</>x1 +</>x
2
!"V M;o -1 +</>i1 (I+ (!oaoa~)M:o/(2Uo(M;o -1))} = 0. 

This result can be derived from Eq. (4.1), employing essentially the same method which 
leads from Eq. (3.1) to Eq. (3.3) in the one-dimensional unsteady case. 

Finally, for stream tube approximation of steady flows, the algorithm leads to the follo­
wing simplified differential equation: 

(4.2) Uo ro-.!!._{{}(1- ~) du + ~ d{} 1- {{} (1- ~) du + ~ d{}} = 0, 
dx u dx udx u dx udx 

where U0 is the speed of the unperturbed flow and where {} = f!o U0 F0 /F(x) is the mass 
flow, F(x) being the cross section of the stream tube. Note that the speeds of sound, b 
and a, can be expressed in terms of the velocity u. This is a consequence of the Eqs. (2.8) 
and (2.9). Equation ( 4.1) is again correct in each of the three cases ~e ~ 1 , ~~ < 1 , ~r ~ 1 . 
The condition that the amplitude be small implies that the relative change of the cross 
section of the stream tube, (F(x)-F0 )/F0 , must be sufficiently small. 

The examples given in this and the previous section demonstrate the utility of the 
method which has been proposed in this paper. As far as the author knows, Eq. (3.1) 
of Section 3 and all the equations of Section 4 have been published for the first time in this 
paper. 
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