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BRIEF NOTES 

On a certain generalization of the concept of simple material 

Cz. WOZNIAK 

THE aim of the note is to give an outline of a general approach to the concept of ideal 
materials, for which the principle of local action holds. To meet this aim the consti
tutive equations are postulated in the form of restrictions imposed on the histories 
of the stress and the local deformation. The classes of materials defined by the resulting 
constitutive equations are referred to as the generalized simple materials. The latter 
include, as the special cases, the known classes of simple materials, rate-type materials, 
elastic-plastic materials or materials with internal variables, as well as those classes 
of materials which have not been investigated up to now. 

1. Generalized simple materials 

LET x(X, t) and T(X, t), X ex(~), t eR, be the deformation function and the Cauchy 
stress tensor, respectively, in the body ~(1). We are to define the ideal material at an arbi
trary but fixed particle X e f!J as the restriction imposed on the stresses at the particle X 
and on the motion of the body~. We shall also connect this restriction with the present 
time instant t e R through the relation 

(1.1) ~"(X, t; x(Z, a), T(X, T)) = 0, 
Zec(tl) 

a,TE( -oo,t] 

where rJ" = (ff!, ... , rJ:) is a known functional. We assume that the form of the function
al relation (1.1) is restricted by the principle of the local action and that of the material 
frame indifference. The former principle gives 

rJ"(X, t; x(X, a)+Vx(X, a)(Z-X), T(X, T)) = 0, 
Zec() 
a,T(-oo,t) 

and after that the latter leads to the relation(l) 

(1.2) l>K(X;F{a), T(T)) = 0, 
a,TE(-oo,t) 

where fJK = (f)i, ... , fJK:) is a known functional and F( a) is a local deformation from the 

(1) The denotations are based on those given in [1]. 
(2) In what follows we use the denotations F(a) = F(X, a), T(T) = T(X. T). 
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fixed local configuration K, detF(a) > 0. The principle of the material frame indifference 
also implies the condition 

(1.3) V{Q(s))l ~K (X; Q(a)F(a), Q('r)T('r)QT(r)) = 0], 
a, TE(-oo, t] 

which holds for any pair (F(a), T('r)) satisfying Eq. (1.2), and where Q(s), se (- oo, t], 
is an orthogonal 3 x 3 matrix function. We shall also assume that the components ~i:, ... , l)j{ 
of the vector function ~K transform as components of scalars, tensors or tensor densities 
in the physical space. 

Provided that the functional ~K is known and the condition (1.3) holds, Eq. (1.2) repre
sents a definition of a certain class (possible empty) of what will be called the generalized 
simple materials. At the same time the functional ~ is said to be the constitutive functional 
for this class of materials. For non pure mechanical theories the functional ~K can also 
depend on other variables than F(a) and T( r) (cf. Sect. 3). 

2. Some general formulas 

Now, we shall show that the known concepts and definitions concerning simple ma
terials can be easily reformulated to a form which is also suitable for the generalized simple 
materials. 

Substituting the polar decomposition F(a) = R(a)U(a) into Eq. (1.2), assuming that 
the rotation R(o) is not constrained when a e (- oo, t], and denoting Q(a) = RT(a), 
we obtain the reduced form of the constitutive equation of a generalized simple material 

(2.1) ~(X; U(a), RT(r)T(r)R(r)) = 0. 
a,Te(-oo,t] 

Eq. (2.1) has to hold for any history of rotation up to the time instant t. Alternative 
forms of the reduced constitutive equations we obtain substituting into (1.3): Q(r) = 
= RT(t)R[r>(r) and Q(a)F(a) = RT(t)R[,>(u) F<t>(a)F(t) = RT(t)U<t>(a)R(t)U(t), cf. [1]. 
Thus, we arrive at 

(2.2) ~(X; u~)(a)U(t), RT(t)R[r)(r)T(r)R(t)(r)R(t)) = 0, 
a,Te(-oo,t] . 

where U~>(a) = RT(t)U<t>(a)R(t). By virtue of Eq. (1.3) we also obtain 

(2.3) ~(X; U<t>(u)R(t)U(t), Rfr>(r)T(r)R<t>(r)) = 0. 
a.Te(-oo,t] 

Eqs. (2.2) and (2.3) remain valid if we replace the present time instant t in U<t>' Rct> by 
an arbitrary time instant s, se (- oo, t]. 

Let eK(X) denote the mass density at the particle X in the local configuration K. Two 

particles i, X will be called isomorphic if the local configurations K, K exist such that 

(2.4) et<i> = el(i), ~(x; ·, · > = ~(i; ·, · ). 
a,Te(-oo,t) a,Te(.:..oo,t] 

This definition also enables us to define the concept of the homogeneous body made 
of the generalized simple material. 
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By the isotropy group KK of the constitutive functional ~K we understand a group of 
unimodular transformations H which satisfy the relation 

(2.5) ~K(X; F(u)H, T(t)) = I)K(X; F(u), T('r)) 
a,TE(-oo,t) C7,TE(-OO,t) 

in the domain of the definition of ~K. Because of Eq. (2.3) and by virtue of

l)i(X; F(o), "(T)) = {)K(X; F(u)G, T(T)) where K = GK, we obtain I)K(X; F(a)H, T('r)) = 

= l)K(X; F(u)HG- 1, T(T)) = l)i{X; F(a)GHG-1 , T(r)) = ~i(X; F(a')H, T(r)), where 

F = FG and where we denote H = GHG - 1 • It follows that the known relation gi = GgKG -t 
between the isotropy groups KK and gK. holds also for the generalized simple materials. 

Let us assume that there exists the local configuration K for which KK = 0, where 0 
is the full orthogonal group. Putting H = QT in Eq. (2.5) and taking into account Eq. (1.3), 
we conclude that the relation 

(2.6) (VQ) [~K(X; QF(u)QT, QT(r)QT) = 0) 
a,T e ( -oo,t] 

holds for all F(u), T( r), u, re (- oo, t], satisfying Eq. (1.2). If for a particle X, _ 
there exist the local configuration K for which the latter condition is valid, then 
the generalized simple material at the particle X is said to be isotropic. From 
Eq. (2.3), making use of (VQ) [~(X; F(a)QT, T(T)) = 0] and putting QT = RT(t), 
because ofV(t) = R(t)U(t)RT(t), we obtain the reduced form of the constitutive equation 
for isotropic generalized simple materials: 

(2.7) ~x(X; U<t>(a)V(t), Rfr>(r)T(T)R<1>(r)) = 0. 
a,Te(-oo,t] 

From Eq. (2. 7) it follows that for an arbitrary isotropic generalized simple material which 
is not simple (in the sense of the known definition, cf. [1] and Eq. (3.1)) the rotations can 
not be eliminated from the constitutive equations [cf. also the theory of the isotropic 
rate-type materials [1] and Eqs. (3.5.1), (3.6.1), below]. If KK = u, where u is a group or · 
unimodular transformations, the form of Eq. (2.7) depends on K only by means of the 
mass density (!K [1]; the class of materials defined by this equation will be called the class 
of generalized simple fluids. Analogously, we can define the generalized simple solids. 

Following the approach outlined above we are able to generalize definitions and theo
rems of the theory of simple materials to the forms which also hold for generalized simple
materials. 

3. Special types of materials 

Defining the functional ~K in the special form 

(3.1) ~K = T(t)- ~K(X; F(o)) 
ae(-oo,t] 

we obtain from (1.2) the weU known definition of the simple materials. The relation (1.2):· 
with the denotation (3.1) is called the principle of determinism for stresses, cf. [1]._ 
Analogously, we can postulate the principle of determinism for deformations, putting 

(3.2) ~K = F(t)-JFK(X; T(T)). 
TE(-oo,t) 
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From (3.1) and (2.1) we obtain the known reduced form of the constitutive equations 
of simple materials. By virtue of (3.2) and (2.1) we arrive at 

(3.3) U(t) = Jt'z{X; RT('r)T(T)R('r)). 
TE( -oo,t) 

Thus for materials defined by Eq. (3.2), the actual value of the pure deformation is deter
mined by the history of stresses and that of rotations. 

Now let us assume that the values of the functional ~K(X; F(O'), T( T)), 0', T e (- oo, t], 
depend only on the values ofF(O'), T(T) for 0', T very near tot. Let us also assume that the 
functions F(O'), T(T) have sufficiently many continuous time derivatives. Then the argu
ments Uct>(O'), Rf,>(T)T(T)R<t>(T) in Eq. (2.2) can be approximated by their Taylor expan-
sions: 

d 
Uct>(O') = 1+ dO' Uct>(O')Ia .. ,(O'-t)+ ... , 

Rf,>(T)T(T)Rct>(T) = T(t)+ ~ [Rf,>(T)T(T)Rct>(T)]IT = ,(T-t)+ ... 

up to some orders r, s, respectively. Substituting the right hand sides of the foregoing 
relations into Eq. (2.2) we obtain the constitutive equation 

(3.4) rK(x; U(t), Rr(t)D,.(t)R(t), Rr(t)T(t)R(t), RT(t)T,.(t)R(t)) = o, 

where n = 1 , ... , r, m = 1 , ... , s, fK is a known vector function and where 

are the stretchings and the eo-rotational stress rates, respectively. We have specified here 
the known rate-type materials [if the number of components of the vector fK is equal to 

six and if T, can be calculated form (3.4)], which constitute the special case of the general
ized simple materials. H s;;?; 1, then, the constitutive equations of the form (3.4) cannot 
be obtained from the theory of simple materials [1]. Thus the rate-type materials for 
s ;;?; 1 are generalized simple materials but they are not simple materials. 

H the values of the constitutive functional ~K depend only on the values of T( T) which 
are very near to t, and if the suitable regularity conditions hold, then the argument 
Rf,>( T) T( T)R(t)( T) in Eq. (2.2) can be approximated by its Taylor expansion 

Rf,>(T)T(T)Rct)(T) = T(t)+T1 (t)(T-t)+ ... up to some orders. Thus Eq. (2.2) can be 
replaced by the following one 

{3.5) FE( X; u~>(O')U(t), Rt(t)T(t)R(t), RT(t)T,.(t)R(t)) = o, 
a e ( -oo, t] 

where m = 1, ... , s and §' JC is a function in arguments which depends on t only. The ideal 
materials defined by Eq. (3.5) will be called the stress rate-type materials. Using Eq. (2.5) 
for H = RT(t) and Eq. (2.6), by virtue of R(t)U(t)RT(t) = V(t), we can deduce from 
Eq. (3.5) that the relation 

·(3.5.1) §'E(X; Uct>(O')V(t), T(t), T,.(t)) = 0, m = 1, ... , s, 
ae(-oo,tJ 

holds for isotropic stress rate-type materials, provided that the local configuration K is 
properly chosen, cf. Sect. 2. 
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Analogously, if the argument U<0 (<1) in Eq. (2.2) can be approximated by the expansion 
U<0 (<1) = l+D1(t)(a-t)+ ... , up to some order r, then instead of (2.2) we shall obtain 

(3.6) ~K(X; RT(t)D,.(t)R(t), U(t), RT(t)Rf,l('r)T(t")R<o(T)R(t)) = 0, 
T e (-eo. t] 

where n = 1, ... , r and where ~K is a function in arguments which depend on t only. 
The ideal material defined by Eq. (3.6) will be called the strain rate-type material. By 
virtue of Eq. (2.6) and because of U(t) = RT(t)V(t)R(t), for the isotropic strain rate-type 
materials we obtain from (3.6) 

(3.6.1) ~K(X; D,.(t), V(t), Rf,>(T)T(T)R<t>(T)) = 0, n = 1, ... , r, 
T e ( -oo,t] 

where ~K is a function in arguments X, D,.(t), V(t). 
We conclude that the known rate-type materials constitute a special case of the stress 

rate-type materials as well as the strain rate-type materials. In the general case all these 
materials are not simple. Following the approach outlined above we can also define the 
generalized simple materials of the integral type and we can formulate the principle of 
fading memory that holds for generalized simple materials. 

We can also observe that the known theories of plastic materials can be obtained as 
special cases of the theory of generalized simple materials. One from Eqs. (1.2) will be 
specified as the algebraic equation for the stress components (it will represent the yield 
condition) and the remaining six will have the form (3.4) for r = 1 and s = 0. 

The concept of the generalized simple material can be also applied in thermomechanics 
of the material continuum, by postulating the constitutive equations of the form 

(3.7) ~i(~; F(<t), T(T), 0(T1), h(T2), g(T3), e(T4), 1J(T5)) = 0; s = {a, T, T1 , ••• , T5 }, 

-eo <s~t 

where 8, h, g, e, 1J, are the absolute temperature, the heat flux, the temperature gradient, 
the internal energy and the specific entropy, respectively. At the same time the principle 
of dissipation 

(3.8) 

has to be interpreted as the restriction imposed on the domain of the definition of the 
functional ~K in Eq. (3. 7). This functional has to be also restricted by the principle of 
material frame indifference 

(3.9) 

(VQ(s))rni(!;Q(<t)F(<1),Q(T)T(T)QT(T),0( T 1),Q(T2)h(T2),Q~(T3)g(T3), e( T4), 1J(Ts)) = 0, 
-OO<S"t 

where Q(s), s e (- oo, t], is an orthogonal 3 x 3 matrix function. 
The constitutive equations of the form (3.7), i.e., with the extra variables, can be also 

used in the pure mechanical problems. If the constitutive functional has the form 

(3.10) ~K = T(t)- TK(X; F(t), A(t)), A(t)-AK(X; F(t), A(t)), 

where T K, AK are known functions, then we arrive at the concept of materials with internal 
variables [2]. 
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Now let us assume that on the motion of the body in the time interval (t0 , t 1) are im
posed simple constraints y, (X; C ( -r)) = 0, C = FIJ', '11 = 1, ... , m, m~ a. Assuming that 
the forces maintaining the constraints do not work, we obtain the following constitutive 
equation of the generalized simple material with simple internal constraints 

(3.11) ~(x; F(11), T(T)- J; .l.'(T)F(T) ay,(~~C(T)) F'(T)) = o 
a,Te( -oo,t) 11=1 

where A."(-r), '11 = 1, ... ,m, are constraints functions (cf. [1], p. 71) such that A."(-r) = 0 
for T < t0 and for T > t 1 • H the constraints are not simple, then we shall define the con
strained generalized simple material by means of Eq. (1.2), provided that T{ -r) is an 
extra-stress tensor, [1], p. 71. In this case we have to apply the general approach to the 
problem of constrained material continua given in [3] and in the related papers. 
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