324.

NOTE ON A THEOREM RELATiNG TO SURFACES.

[From the Philosophical Magazine, vol. xxv. (1863), pp. 61, 62.]

THE following apparently self-evident geometrical theorem requires, I think, a proof; viz. the theorem is-"If every plane section of a surface of the order $m+n$ break up into two curves of the orders m and n respectively, then the surface breaks up into two surfaces of the orders m, n respectively."

To fix the ideas, suppose $n=\mathbf{2}$. Imagine any line meeting the surface in $m+2$ points, the section includes a conic which meets the line in two of the $m+2$ points, say the points $A, A^{\prime}\left({ }^{1}\right)$. Suppose that the plane revolves round the line $A A^{\prime}$, the section will always include a conic which passes through these same two points A, A^{\prime}; and it is to be shown that the sheet, the locus of this conic, is a surface of the second order. In fact the conic in question, say $A P A^{\prime}$, by its intersection with an arbitrary plane traces out a branch of the intersection of the given surface with the arbitrary plane. And if $A B A^{\prime} B^{\prime}$ be the conic in any particular plane through A, A^{\prime}, and if the arbitrary plane meet this conic in the points B, B^{\prime}, then the branch passes through these points B, B^{\prime}. Imagine the plane $A B A^{\prime} B^{\prime}$ revolving round $B B^{\prime}$ until it coincides with the arbitrary plane; the section includes a conic passing through the points B, B^{\prime}, and the before-mentioned branch is this conic; that is, the conic $A P A^{\prime}$ by its intersection with an arbitrary plane traces out a conic; or, what is the same thing, the sheet, the locus of the conic $A P A^{\prime}$, is met by an arbitrary plane in a conic, that is, the sheet is a surface of the second order; and the given surface thus includes a surface of the second order, and is therefore made up of two surfaces of the orders m and 2 respectively. The demonstration seems to me to add at least

[^0]something to the evidence of the theorem asserted, but I should be glad if a more simple one could be found. Analytically, the theorem is-"If
$$
(x, y, z, \alpha x+\beta y+\gamma z)^{m+n}
$$
where (α, β, γ) are arbitrary, break up into factors $(x, y, z)^{m},(x, y, z)^{n}$, rational in regard to (x, y, z), then $(x, y, z, w)^{m+n}$ breaks up into factors $(x, y, z, w)^{m},(x, y, z, w)^{n}$, rational in regard to (x, y, z, w)." It would at first sight appear that (α, β, γ) being arbitrary, these quantities can only enter into the factors of $(x, y, z, \alpha x+\beta y+\gamma z)^{m+n}$ through the quantity $\alpha x+\beta y+\gamma z$; that is, that the factors in question, considered as functions of ($x, y, z, \alpha, \beta, \gamma$), are of the form
$$
(x, y, z, \alpha x+\beta y+\gamma z)^{m}, \quad(x, y, z, \alpha x+\beta y+\gamma z)^{n}
$$
and then replacing the arbitrary quantity $\alpha x+\beta y+\gamma z$ by w, the factors of $(x, y, z, w)^{m+n}$ will be $(x, y, z, w)^{m},(x, y, z, w)^{n}$. But the objection proves too much; for in a similar way it would follow that if $(x, y, \alpha x+\beta y)^{m+n}$, where α, β are arbitrary, breaks up into the factors $(x, y)^{m},(x, y)^{n}$, rational in regard to (x, y) (and quà homogeneous function of two variables it always does so break up), then ($x, y, z)^{m+n}$ would in like manner break up into the factors $(x, y, z)^{m},(x, y, z)^{n}$, rational in regard to (x, y, z) : and a simple example will show that it is not true that the factors of $(x, y, \alpha x+\beta y)^{m+n}$ only contain (α, β) through $\alpha x+\beta y$; in fact, if the function be $=x^{2}+y^{2}+(\alpha x+\beta y)^{2}$, then the factor is
$$
\frac{1}{\sqrt{\alpha^{2}+1}}\left\{\left(\alpha^{2}+1\right) x+\left(\alpha \beta+i \sqrt{\alpha^{2}+\beta^{2}+1}\right) y\right\}
$$
which cannot be exhibited as a function of $\alpha, \beta, \alpha x+\beta y$.
I am not acquainted with any analytical demonstration; the geometrical one cannot easily be exhibited in an analytical form.

2, Stone Buildings, W.C., November 26, 1862.

[^0]: ${ }^{1}$ The figure referred to will be at once understood by considering A, A^{\prime} as the poles of an ellipsoid, or say of a sphere, $A B A^{\prime} B^{\prime}$ the meridian of projection, $A P A^{\prime}$ any other meridian, $B P B^{\prime}$ the equator or any other great circle.

