325.

NOTE ON A THEOREM RELATING TO A TRIANGLE, LINE, AND CONIC.

[From the Philosophical Magazine, vol. xxv. (1863), pp. 181-183.]
I FIND, among my papers headed "Generalization of a Theorem of Steiner's," an investigation leading to the following theorem, viz.:

Consider a triangle, a line, and a conic; with each vertex of the triangle join the point of intersection of the line with the polar of the same vertex in regard to the conic; in order that the three joining lines may meet in a point, the line must be a tangent to a curve of the third class; if, however, the conic break up into a pair of lines, or in a certain other case, the curve of the third class will break up into a point, and a conic inscribed in the triangle.

Let the equations of the sides of the triangle be

$$
x=0, \quad y=0, \quad z=0
$$

the equation of the conic

$$
\left(a, b, c, f, g, h \gamma_{l} x, y, z\right)^{2}=0
$$

and that of the line

$$
\lambda x+\mu y+\nu z=0
$$

then the polar of the vertex $(y=0, z=0)$ has for its equation

$$
a x+h y+g z=0
$$

it therefore meets the line $\lambda x+\mu y+\nu z=0$ in the point

$$
x: y: z=h \nu-g \mu: g \lambda-a \nu: a \mu-h \lambda,
$$

and the equation of the line joining this point with the vertex $(y=0, z=0)$ is $(a \mu-h \lambda) y=(g \lambda-a \nu) z$. The equations of the three joining lines therefore are

$$
\begin{aligned}
& (a \mu-h \lambda) y=(g \lambda-a \nu) z, \\
& (b \nu-f \mu) z=(h \mu-b \lambda) x, \\
& (c \lambda-g \nu) x=(f \nu-c \mu) y,
\end{aligned}
$$

lines which will meet in a point if

$$
(a \mu-h \lambda)(b \nu-f \mu)(c \lambda-g \nu)-(g \lambda-a \nu)(h \mu-b \lambda)(f \nu-c \mu)=0
$$

or, multiplying out and putting as usual

$$
\begin{aligned}
& K=a b c-a f^{2}-b g^{2}-c h^{2}+2 f g h, \\
& \Re=b c-f^{2}, \& c .
\end{aligned}
$$

if

$$
\left.\begin{array}{l}
2(a b c-f g h) \lambda \mu \nu \\
+a \mathfrak{S} \mu \nu^{2}+a \mathfrak{S} \mu^{2} \nu \\
+b \mathfrak{J} \nu \lambda^{2}+b \mathfrak{F} \nu^{2} \lambda \\
+c \mathfrak{F} \lambda \mu^{2}+c \mathbb{S} \lambda^{2} \mu
\end{array}\right\}=0,
$$

that is, the line must touch a curve of the third class.
If this equation break up into factors, the form must be

$$
(\alpha \lambda+\beta \mu+\gamma \nu)(A \mu \nu+B \nu \lambda+C \lambda \mu)=0
$$

that is, we must have

$$
\begin{aligned}
& A \alpha+B \beta+C \gamma=2(a b c-f g h) \\
& B \alpha=b \mathfrak{J}, \quad C \alpha=c \mathbb{S} \\
& C \beta=c \mathfrak{F}, \quad A \beta=a \mathfrak{J} \\
& A \gamma=a \circlearrowleft(, \quad B \gamma=b \mathfrak{F}
\end{aligned}
$$

and the last six equations give without difficulty

$$
\begin{array}{ll}
A=\frac{k a}{\mathfrak{F}}, & \alpha=\frac{1}{k} \mathscr{G} \mathfrak{F} \\
B=\frac{k b}{\mathfrak{F}}, & \beta=\frac{1}{k} \mathfrak{J} \mathfrak{F} \\
\dot{C}=\frac{k c}{\sqrt{J}}, & \gamma=\frac{1}{k} \mathfrak{F} \mathscr{C}
\end{array}
$$

where k is arbitrary; the first equation then gives

$$
\frac{a \mathfrak{S H}}{\mathfrak{F}}+\frac{b \mathfrak{J} \mathfrak{F}}{\mathfrak{S}}+\frac{c \mathfrak{F} \mathscr{F}}{\mathfrak{J}}=2(a b c-f g h)
$$

or, reducing by the equations, © $\mathfrak{j} \mathfrak{H}=\mathfrak{A} \mathfrak{F}+a K$, \&c., this is

$$
\mathfrak{N} a=\mathfrak{B} b+\sqrt{〔} c-2 a b c+2 f g h+\left(\frac{a^{2}}{\mathfrak{F}}+\frac{b^{2}}{\mathfrak{G}}+\frac{c^{2}}{\mathfrak{J}}\right) K=0 ;
$$

which, substituting for $\mathfrak{A}, \mathfrak{B}$, © their values, becomes

$$
K\left(1+\frac{a^{2}}{\mathfrak{F}}+\frac{b^{2}}{\sqrt{\mathfrak{C}}}+\frac{c^{2}}{\sqrt{5}}\right)=0
$$

Hence if $K=0$, that is, if the conic break up into a pair of lines, or if

$$
1+\frac{a^{2}}{\sqrt{夕}}+\frac{b^{2}}{\sqrt{5}}+\frac{c^{2}}{\sqrt{5}}=0
$$

in either case the equation of the curve of the third class becomes

$$
\left(\frac{\lambda}{\mathfrak{F}}+\frac{\mu}{\mathfrak{A}}+\frac{\nu}{\mathfrak{J}}\right)\left(\frac{a}{\mathfrak{F}} \mu \nu+\frac{b}{\mathfrak{G}} \nu \lambda+\frac{c}{\mathfrak{J}} \lambda \mu\right)=0 ;
$$

that is, the curve breaks up into a point, and a conic inscribed in the triangle.
In the case where the conic breaks up into a pair of lines, then we have

$$
(a, b, c, f, g, h \chi x, y, z)^{2}=2(p x+q y+r z)\left(p^{\prime} x+q^{\prime} y+r^{\prime} z\right),
$$

and thence
$(\mathfrak{A}, \mathfrak{B}, \mathfrak{(}, \mathfrak{F}, \mathfrak{b}, \mathfrak{S} X x, y, z)^{2}=-\left\{\left(q r^{\prime}-q^{\prime} r\right) x+\left(r p^{\prime}-r^{\prime} p\right) y+\left(p q^{\prime}-p^{\prime} q\right) z\right\}^{2} ;$
so that the equation in (λ, μ, ν) is

$$
\begin{aligned}
&\left\{\left(q r^{\prime}-q^{\prime} r\right) \lambda+\left(r p^{\prime}-r^{\prime} p\right) \mu+\left(p q^{\prime}-p^{\prime} q\right) \nu\right\} \\
&\left\{p p^{\prime}\left(q r^{\prime}-q^{\prime} r\right) \mu \nu+q q^{\prime}\left(r p^{\prime}-r^{\prime} p\right) \nu \lambda+r r^{\prime}\left(p q^{\prime}-p^{\prime} q\right) \lambda \mu\right\}=0
\end{aligned}
$$

where the point represented by the equation

$$
\left(q r^{\prime}-q^{\prime} r\right) \lambda+\left(r p^{\prime}-r^{\prime} p\right) \mu+\left(p q^{\prime}-p^{\prime} q\right) \nu=0
$$

is, of course, the intersection of the two lines.

