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SKETCH OF A PROOF OF THE THEOREM THAT EVERY 
ALGEBRAIC EQUATION HAS A ROOT.

[From the Philosophical Magazine, vol. xvm. (1859), pp. 436—439.]

I have referred to the theorem as usually stated; for it is an easy consequence 
of the existence of a single root of an equation of any order, that for an equation of 
the nth order there are n roots: the proof here proposed goes, however, to show 
directly the existence of the n roots: it is in form a geometrical one, and was 
suggested to me some months ago by a letter from Prof. De Morgan, containing the 
remark made in his memoir, “A Proof of the Existence of a Root in every Algebraic 
Equation,” &c. (Camb. Phil. Trans, vol. X. 1858), viz. “that the curves P = 0, Q = 0, 
the intersections whereof determine the root-points, are such that two branches, one 
of each curve, cannot enclose a space.” The proof which occurred to me was in 
character somewhat similar to that given by the Astronomer Royal in the paper, 
“ Suggestion of a Proof of the Theorem that every Algebraic Equation has a Root ” 
(Camb. Phil. Trans, vol. X. 1858), and which was suggested to him by Prof. De Morgan’s 
memoir. I have since varied my proof by considering therein cones in the place of 
plane curves. It will be obvious, upon reading it, that the proof is closely connected 
with Cauchy’s well-known theorem for the number of roots within a given circuit; 
the circuit being in this case infinity, and the number of roots included within it 
consequently equal to the order of the equation.

The curve represented by an equation of the nth degree between the coordinates 
(x, y) is by definition a curve of the nth order; and a cone standing on any such 
curve (taking the vertex for origin) is represented by a homogeneous equation of the 
nth degree between the coordinates (x, y, z\ and is by definition a cone of the nth 
order. It is very easy to show that an equation of the nth degree cannot have more

www.rcin.org.pl



248] SKETCH OF A PROOF OF THE THEOREM &C. 117

order is not intersected by a line in more than n points, and that a cone of the 
nth order is not intersected by a plane (I speak throughout of planes through the
vertex) in more than n lines. I assume that an algebraic curve is always a continuous
curve, viz. that it consists of a branch or branches, no one of which is a courbe
pointillee, or a branch terminating abruptly in a point: an algebraic cone will be in 
the like sense a continuous surface. An algebraic curve cannot be an indefinite 
spiral, for in that case there would be lines meeting it in an infinity of points; and 
in like manner an algebraic cone cannot be an indefinite spiral surface: an algebraic 
cone consists, therefore, of a closed sheet or sheets. An algebraic curve may indeed 
have conjugate or isolated points, and an algebraic cone have conjugate or isolated 
lines: this is a circumstance which will be adverted to in the sequel. It will fix the 
ideas as to the general form of an algebraic cone, to remark that it may comprise
twin-pair sheets, such as the sheet of a cone of the second order (this is properly
spoken of as a twin-pair sheet, each of the two opposite portions of it being called, 
for distinction, a twin-sheet); and of single sheets, such as one at least of the sheets 
of a cone of the third or any other odd order (see the annexed “Note upon Cones 
of the Third Order,” [249]). The advantage of the consideration of cones instead of 
plane curves, is that we have only closed sheets, and thus get rid of the distinction
which exists for plane curves between infinite branches and the branches which are
closed curves.

My proof depends on the following lemma, viz. “ Consider two algebraic cones with 
the same vertex, each of them of the order n; then if there be some one plane 
meeting, the first cone in n lines, and the second cone in n lines, such that the 
lines of each set occur alternately, the two cones intersect in at least n lines.”

The truth of this lemma is, I conceive, a matter of intuition, depending only on 
the notion of the continuity of the sheets of the surface. Thus, if we have in piano, 
through a point 0, the lines A, A' and B, B, such that, A, a. being opposite points 
on the same line, and so for the other lines, the order round 0 is A, B, A', B', 
a, ft, a!, ft', it is obvious that we cannot through the lines A, A' draw a cone, and 
through the lines B, B' draw a cone, without making these cones intersect in at least 
two lines : and in like manner for two sets, each of n lines. I have, in the enunciation 
of the lemma, said that the cones are each of them of the order n; this was 
necessary in order to exclude a case which might otherwise have happened, viz. a 
line of intersection of the plane with either of the cones might have been a conjugate 
or isolated line without any sheet through it; and if this were so, we could not infer 
the existence of the n lines of intersection of the two cones. But if a plane meet 
an algebraic cone of the nth order in n lines, no one of these can be a conjugate 
or isolated line; for such line is to be considered as two or more coincident lines, 
and there would be in all more than n lines of intersection of the plane and cone.

Consider now the equation
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where </>w is a rational and integral function of u with (in general) imaginary coefficients, 
and write

P, Q being real functions of (a?, y), each of them of the degree n; if (x, y) are
rectangular coordinates, then P = 0, Q = 0 are real curves each of the order n. And
to each point of intersection of the two curves there corresponds a root of the 
equation. The two curves do not intersect in more than n points (for if they did, 
the equation cf)U = 0 would have more than n roots); hence if it be shown that the
two curves intersect in at least n points, they will intersect in precisely n points, and
the equation will have n roots. Take any point as the common vertex of two cones 
standing upon the curves P = 0, Q = 0 respectively; each point of intersection of the 
two curves corresponds to a line of intersection of the two cones, and it is only 
necessary to show that the two cones intersect in at least n lines Take for the 
vertex a point in the perpendicular at the origin of (x, y) to the plane of the two 
curves, and at a distance unity from such origin, viz. a point such that, treating it 
as the origin of the coordinates (x, y, z), the coordinates in respect thereto of the origin 
(x, y) are x = 0, y = 0, z = 1. The equations of the cones are at once deduced from 

those of the curves by writing therein in the place of (x, y) and, to render

the equation integral, multiplying by zn; or if P' = 0, Q' = 0 are the equations of the 
cones, we have

Consider the section by the plane through the vertex parallel to the plane of the 
two curves: the equation of this plane is z—0; and it is clear that, to obtain the 

intersections of this cone with the plane in question, we have only in < 

to disregard all the terms after the first. Suppose that 

then putting 

the equations Po' = 0, Qo' = 0 determine the intersections of the plane z = 0 with the 
cones P = 0, Q — 0 respectively. But writing 

we have
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so that 

or the intersections with the cone P = 0 are the n lines given in direction by the 
equation 

and the intersections with the cone Q = 0 are the n lines given in direction by the 
equation

nd + a = nnr;

in each of which equations m is any integer number from 0 to n — 1. Hence the 
plane z = 0 meets the cones in two sets of lines succeeding each other alternately, as 
required by the lemma, and the two cones intersect in at least n lines. And it is 
thus shown that the given equation of the nth degree has n roots.

2, Stone Buildings, W.C., September 26, 1859.
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