258.

ON A RELATION BETWEEN TWO TERNARY CUBIC FORMS.

[From the Philosophical Magazine, vol. xx. 1860, pp. 512-514.]

THE cubic form

$$
x^{3}+y^{3}+z^{3}+6 l x y z
$$

is in general linearly transformable into the form

$$
(X+Y+Z)^{3}+27 k X Y Z
$$

in fact, writing

$$
\begin{aligned}
& X=2 l x-y-z \\
& Y=2 l y-z-x \\
& Z=2 l z-x-y
\end{aligned}
$$

we have identically

$$
\left(1-2 l+4 l^{2}\right)(X+Y+Z)^{3}+24(l-1)^{3} X Y Z=8(2 l+1)^{2}(l-1)^{3}\left(x^{3}+y^{3}+z^{3}+6 l x y z\right)
$$

and the value of k consequently is

$$
k=-\frac{8(l-1)^{3}}{9\left(1-2 l+4 l^{2}\right)}
$$

If, however, $l=1$ or $l=-\frac{1}{2}$, the transformation fails. In the former case, viz. for $l=1$, the equations for the linear transformation become

$$
\begin{aligned}
& X=2 x-y-z, \\
& Y=2 y-z-x, \\
& Z=2 z-x-y,
\end{aligned}
$$

which give $X+Y+Z=0$, so that X, Y, Z are no longer independent; and the formula of transformation becomes

$$
(X+Y+Z)^{3}=0 .
$$

It may be noticed that the invariant S of the form

$$
x^{3}+y^{3}+z^{3}+6 l x y z
$$

is $S=-l+l^{4}$, so that $l=1$ is one of the values which make S vanish. And the above transformation is not applicable to the cubic form $x^{3}+y^{3}+z^{3}+6 x y z$, which is a form for which S vanishes. The transformation, however, holds good for $l=0$, which is another value which makes S vanish; or it does apply to the form $x^{3}+y^{3}+z^{3}$, for which S vanishes. The transformation, in fact, is

$$
(X+Y+Z)^{3}+24 X Y Z=-8\left(x^{3}+y^{3}+z^{3}\right),
$$

with the linear equations

$$
\begin{aligned}
& X=-y-z, \\
& Y=-z-x, \\
& Z=-x-y .
\end{aligned}
$$

The above two forms for which S vanishes, viz.

$$
\begin{aligned}
& x^{3}+y^{3}+z^{3}+6 x y z \\
& x^{3}+y^{3}+z^{3},
\end{aligned}
$$

are, notwithstanding, equivalent to each other, as appears by the identical equatiou

$$
(x+y+z)^{3}+\left(x+\omega y+\omega^{2} z\right)^{3}+\left(x+\omega^{2} y+\omega z\right)^{3}=3\left(x^{3}+y^{3}+z^{3}+6 x y z\right),
$$

where ω is an imaginary cube root of unity. In the latter of the two cases of failure, viz. for $l=-\frac{1}{2}$, the equations for the linear transformations are

$$
X=Y=Z=-x-y-z ;
$$

so that X, Y, Z are not only not independent, but they are connected by two linear relations. And the formula of transformation becomes

$$
(X+Y+Z)^{3}-27 X Y Z=0,
$$

which is, in fact, true in virtue of the equations $X=Y=Z$.
The two forms of equation,

$$
\begin{aligned}
& x^{3}+y^{3}+z^{3}+6 l x y z=0 \\
& (x+y+z)^{3}+27 k x y z=0,
\end{aligned}
$$

represent each of them equally well a curve of the third order without a double point. In the first form the three real points of inflexion are given by

$$
(x=0, y+z=0),(y=0, z+x=0),(z=0, x+y=0) ;
$$

or what is the same thing, the points in question are the intersections of the lines $x=0, y=0, z=0$ with the line $x+y+z=0$; or we have $x+y+z=0$ for the equation of the line through the three points of inflexion; and the equations of the tangents at the points of inflexion are

$$
2 l x-y-z=0, \quad 2 l y-z-x=0, \quad 2 l z-x-y=0 .
$$

For the second form it is obvious that the points of inflexion are the intersections of the lines $x=0, y=0, z=0$ with the line $x+y+z=0$; and, moreover, that the lines $x=0, y=0, z=0$ are the tangents at the point of inflexion.

The first of the above-mentioned forms, however, cannot represent a curve with a double point. In fact the condition for its doing so would be $1+8 l^{3}=0$; but when this condition is satisfied, the left-hand side breaks up into linear factors, and the equation represents, not a proper curve of the third order, but a system of three lines. The second form can represent a curve having a double point; viz. if $k=-1$, the curve will have a conjugate or isolated point at the point $x=y=z$. It is clear \grave{a} priori that $(x=0, y=0, z=0$ being real lines) neither of the forms can represent a curve of the third order having a double point with two real branches through it, since in this case the curve has only one real point of inflexion.

I have elsewhere used the word "node" to denote a double point, and I take the opportunity of suggesting the employment of the words "crunode" (crus) and "acnode" (acus) to denote respectively a double point with two real branches through it, and a conjugate or isolated point.

2, Stone Buildings, W.C., October 19, 1860.

