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ON THE DOUBLE TANGENTS OF A PLANE CURVE.

[From the Philosophical Transactions of the Royal Society of London, vol. cxlix. for the 
year 1859, pp. 193—212. Received March 17,—Read April 14, 1859.]

It was first shown by Pliicker on geometrical principles, that the number of 
the double tangents of a plane curve of the order m was (m — 2) (m2 — 9): see the 
note, “Solution d’une question fondamentale concernant la thfiorie g^nfirale des Courbes,” 
Crelle, t. xn. pp. 105—108 (1834), and the “Theorie der algebraischen Curven” (1839). 
The memoir by Hesse, “Ueber die Wendepuncte der Curven dritter Ordnung,” Crelle, 
t. xxviii. pp. 97—107 (1844), contains the analytical solution of the allied easier problem 
of the determination of the points of inflexion of a plane curve. In the memoir, 
“Recherches sur l’elimination et sur la theorie des Courbes,” Crelle, t. xxxiv. (1847), 
pp. 30—45, [53], I showed how the problem of double tangents admitted of an analytical 
solution, viz. if U= 0 is the equation of the curve, L, M, JY the first derived functions 
of IT, and 

(where a, ft, 7 are arbitrary), then the points of contact of the double tangents are 
given as the intersections of the curve U = 0, with a curve the equation whereof is 
in the first instance obtained under the form [F] = 0; [F] being a given function of

D*U, LFU, ... DmU,

of the degree m? — m — 6 in respect of (a, ft, 7), the degree m? — 2m2 — 10m + 12 in 
respect of (x, y, z), and the degree m? + m — 12 in respect of the coefficients of U. 
It was necessary, in order that the points of intersection should be independent of the 
arbitrary quantities (a, ft, 7), that we should have identically

[F] = A. U+N.HU,
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260] ON THE DOUBLE TANGENTS OF A PLANE CURVE. 187

N being of the degree w2 — m — 6 in (a, /?, 7), and consequently IIU a function of 
(x, y, z) without (a, 7). Guided by Hesse’s investigation for the points of inflexion,
I asserted that it was probable that N was of the form (ax + /3y + yz')mi~7n~6; which 
being so, n U would be of the degree (m — 2) (m2 — 9) in respect of (x, y, z\ and the 
degree rr^ + m—12 in respect of the coefficients, and I was thus led to the theorem, 
“On trouve les points de contact des tangentes doubles en combinant avec l’dquation 
de la courbe une Equation n U = 0, de l’ordre (m — 2) (m2 — 9) par rapport aux variables 
et de l’ordre m2 + m —12 par rapport aux coefficients—c’est-a-dire, puisqu’il correspond 
deux points de contact a une tangente double, le nombre de ces tangentes est dgal 
a fyn (m — 2) (m2 — 9) : th^oreme demontre indirectement par M. Plucker.”

Hesse, in the memoir “Ueber Curven dritter Ordnung u.s.w.,” Crelle, t. xxxvi. pp. 
143—176 (1848), showed how the components D2U, D5U,... DmU of [F] could each of 
them be expressed in a simplified form, and he thus effected the actual reduction of [F] 
to the form A. U + (ax + fty + yz)*^^ R, where R still contained the arbitrary quantities 
(a, /3, 7) in the degree (m — 2)(m — 3). In particular for a quartic curve, the equation 
R = 0 was shown to be

3Q2Q4-$=0,

where the left-hand side is of the degree 2 in (a, /3, 7) and the degree 16 in (x, y, 2); 
and which should therefore by means of the equation U= 0 be reducible so as to contain 
the factor (ax + /3y + yz)2.

Jacobi’s paper, “Beweis des Satzes, dass eine Curve n-ten Grades im allgemeinen 
fyn (n — 2) (n2 — 9) Doppeltangenten hat,” Crelle, t. XL. pp. 237—260 (1850), did not, I 
think, materially advance the solution of the question. In a letter to Jacobi, dated 
the 30th December, 1849, published at the conclusion of the last-mentioned paper, 
Hesse gave the equation of the curve of the 14th order for the points of contact of 
the double tangents of a quartic, viz. in my notation,

(21, 53, (5, & @, $&XH, dyH, dzH)2-H(%, 53, (5, $, @, dy, ^2H = 0,

and the demonstration is given in Hesse’s paper, “Ueber die ganzen homogenen 
Functionen von der dritten und vierten Ordnung zwischen drei Variabeln,” Crelle, t. xli. 
pp. 285—292 (1851), and is reproduced in Mr Salmon’s Treatise on the Higher Plane 
Curves (1852). Two very interesting memoirs by Hesse and Steiner, Crelle, t. xlix. 
(1855), relate to the geometrical theory of the double tangents of a quartic, and it is not 
necessary to refer to them more particularly. It is to be observed that the curve 
which determines the points of contact of the double tangents is not absolutely deter
minate ; for we may, it is clear, in the place of n U = 0, write IIU + M. U = 0, where 
M is an arbitrary function of the proper degree: a very elegant transformation in the 
case of the quartic is given in Hesse’s paper, “Transformation der Gleichung der Curven 
14ten Grades, welche eine gegebene Curve 4ten Grades in den Bertihrungspuncten 
ihrer Doppeltangenten schneiden,” Crelle, t. Lil. pp. 97—103 (1856).

Mr Salmon’s work above referred to, contains the fundamental theorem of the 
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188 ON THE DOUBLE TANGENTS OF A PLANE CURVE. [260

which lies on the second or line polar of the point of contact with respect to the 
Hessian. In my “Memoir on Curves of the Third Order,” Phil. Trans, vol. cxlvii. 
(1857), pp. 415—446, art. No. 37, [146], I gave an identical equation relating to the 
tangential of a cubic, but which is not there exhibited in its proper form; this was 
afterwards effected by Mr Salmon, in the paper “ On Curves of the Third Order,” 
Phil. Trans, vol. CXLVIII. (1858), pp. 535—541. The equation, as given by Mr Salmon, 
is in the notation of the present memoir, 

an equation which in fact puts in evidence the last-mentioned theorem for the tangential 
of a cubic.

The idea occurred to me of considering, in the case of the higher plane curves, 
the tangentials of a given point of the curve, viz. the points in which the tangent 
again meets the curve; for by expressing that two of these tangentials were coincident, 
we should have the condition that the given point is the point of contact of a 
double tangent. But I was not able to complete the solution.

Finally, Mr Salmon discovered the equation of a curve of the order m— 2, which 
by its intersections with the tangent at the given point determines the tangentials, 
and by expressing that the curve in question is touched by the tangent, he was led 
to a complete solution of the Double-tangent problem. Mr Salmon’s result is given 
in the note, “On the Double Tangents to Plane Curves,” in the Philosophical Magazine 
for October 1858. The discovery just referred to led me to the investigations of the 
present memoir, in which it will be seen that I obtain, for a curve of any order 
whatever, the identical equation corresponding to the before-mentioned equation obtained 
by Mr Salmon in the case of a cubic; which identical equation puts in evidence the 
theorem as to the tangentials of the curve, and may thus be considered as containing 
in itself the solution of the Double-tangent problem: the identical equation is besides 
interesting for its own sake, as a part of the theory of ternary quantics.

1. Mr Salmon’s solution of the problem of double tangents is based upon the 
following analytical determination of the tangentials of any point of the curve.

Let
T = (*$Z, Y, Z)n=0

be the equation of the given curve, (X, Y, Z) being current coordinates; and let 
(x, y, z) be the coordinates of a point on the curve, so that we have

U = (*fe ^)h = 0, 
a condition satisfied by the coordinates of the point in question.

Then the tangent 
v=(Xdx+ Ydv + Zdz)u=o 

at the point (x, y, z), meets the curve besides in (n — 2) points, which are the 
tangentials of the given point (a?, y, z), and which are determined as the intersections 
MT frlM foHCfODf 1/ ----- O P Pl O omdnTn mi inrn
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260] ON THE DOUBLE TANGENTS OF A PLANE CURVE. 189

2. To express the equation of this curve, let U1} U2, ... be the successive emanants 
of U, taken with the facients of emanation («z, y/} z^), viz.

where it should be noticed that the numerical determination is such, that putting 
(x, y, z} for (a?z, yt, z^), then Ux, U2, ... become respectively equal to U. [The numerical 
determination should have been and in the latter part of the memoir is assumed to 
be such as to render H1, H2, &c. equal to H, on making the substitution in question: 
the correction was made in a later memoir “ On the double tangents of a curve of 
the fourth order.”] Suppose also that H, Hlf H2,... are the Hessians of U, U1) U2) ..., 
viz. H is the determinant formed with the second derived functions of U with respect to 
(x, y, z), Hl the like determinant with the second derived functions of with respect to 
the same quantities (a-, y, z~); and so on. Moreover let Dn~2H, = (Xdx + Ydy + Zd^)n~2H, 
denote the (n — 2)thic emanant of H with respect to the current coordinates (X, Y, Z) 
as facients of emanation; and similarly let Dn~2IIx, Dn~2H2, ... denote the (n — 2)thic 
emanants of Hx, H2y... in respect to the same facient of emanation—it being understood 
that in all these functions, (<rz, yz, zj) are after the differentiations to be replaced by 
(x, y, z). It is to be observed that Ur is of the degree (n — r) in (x, y, z), and con
sequently Hr of the degree 3(n — 2— r); hence Dn~2Hr is of the degree 3(n —2 — r)—(n — 2), 
= 2(n — 2) — 3r, which implies that —2), for otherwise Dn~2Hr would be identically
equal to zero. Upon replacing («z, yz, £z) by (x, y, z\ Dn~2Hr (r satisfying the above 
condition) becomes of the degree 2 (n — 2) in (x, y, z\ and it is obviously of the degree 3 
in the coefficients of U, and of the degree (n — 2) in the current coordinates (X, Y, Z).

3. This being premised, we have

for the equation of the curve of the order (n — 2), which by its intersection with the 
tangent gives the tangentials of the given point; the numerical coefficients are the 
binominal coefficients of the order (n — 1) taken with the signs + and — alternately, 
and the series is continued as long as the terms do not vanish, that is, if as before 
r denote the suffix of H, for so long as — 2); but of course the value will
not be altered by continuing the series to r — n — 1. In particular, for the quartic 
we have 

for the quintic 
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190 ON THE DOUBLE TANGENTS OE A PLANE CURVE. [260

and so on. The function fl, like the several component terms, is of course of the 
degree 3 in the coefficients of U, and of the degree 2 (n — 2) in (a?, y, z).

4. It is to be remarked that the formula applies to a cubic; we have here 
simply fl = DH, which agrees with a result already mentioned. It may be noticed 
also that in the general case the formula gives at once the condition for the points 
of inflexion; in fact, if the point (x, y, z) be a point of inflexion, then one of the 
tangentials must coincide with this point, or the equation fl = 0 will be satisfied by 
writing therein (#, y, z) for (X, Y, Z); but when this is done D"1-2!!, Dn~2Hx &c. 
reduce themselves (to numerical factors pres) to H, and the equation becomes simply 
H = 0, which is the well-known condition for the points of inflexion.

5. If two of the tangentials coincide, or what is the same thing, if the tangent 
F=,0 touches the curve fl = 0, then the point (x, y, z) will be the point of contact 
of a double tangent. The equation which expresses the condition in question, treating 
therein (x, y, z) as current coordinates, is consequently that of a curve, intersecting 
the given curve (now represented by U= 0) in the points of contact of the double 
tangents. The process leads to a determinate form IIU = 0, of the curve in question, 
but of course any curve whatever, 1117'+ M . JJ = 0, will intersect the curve U = 0 in 
the points of contact of the double tangents.

6. I write for the moment 

for thv two equations; the coefficients (A, ...), as already mentioned, are of the degree 
2 (n — 2) in (x, y, z) and of the degree 3 in the coefficients of U; or as we may express it,

In like manner £, y, £ are of the degree (n — 1) in (a?, y, z), and the degree 1 in the 
coefficients of U, or we may write

7. The equation which expresses that the line V = 0 touches the curve fl = 0, is 
Ffl = 0, where the facients of the Reciprocant Ffl are the coefficients (£, y, £) of the 
linear function. This equation is of the form 

or attending to the forms of 

or what is the same thing, the form 
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260] ON THE DOUBLE TANGENTS OF A PLANE CURVE. 191

viz. the curve through the points of contact of the double tangents is a curve of the 
order (n—2)(n2 —9), and its equation contains the coefficients of the equation U = 0 
of the given curve in the degree (n + 4)(n — 3). And since each double tangent 
corresponds to two points of contact, the number of double tangents is |n(n — 2)(n2—9). 
Th;s agrees with the before-mentioned results.

8. The whole problem is thus reduced to the demonstration of Mr Salmon’s 
expression for the curve fl = 0. To fix the ideas, consider the case of a quartic curve 
T = (*$AT, Y, Z)i=0, and let the function U = (*$#, y, z)4 (or as for shortness we 
may write it, U = (x, y, z')i) and certain of its emanants be represented as follows, viz.— 

where (X', Y', Z') are new arbitrary facients; but, as before, (X, Y, Z~) are taken to 
be current coordinates, and (x, y, z) the coordinates of the given point on the curve:

e = 0 is the equation of the curve ;

d- 0, the equation of the first or cubic polar of the point (x, y, ^);

Z> = 0, the equation of the last or line polar of the point (x, y, z\ or what is the 
same thing (the point being on the curve), the tangent of the curve 
at this point ;

a= 0, the condition which expresses that the point is on the curve.

9. Imagine now an identical equation,

aI + &II + dIII + eIV = 0;
then, since a = 0, we have

&II 4-dill + elV = 0 ;
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192 ON THE DOUBLE TANGENTS OF A PLANE CURVE. [260

and if in this equation we write 6=0, e = 0, it becomes Hid = 0, that is, the points 
of intersection of the curve e = 0 and the tangent 6 = 0 lie on one or other of the 
curves d = 0, III = 0. But the points in question do not lie on the curve d = 0, 
consequently they lie on the curve III = 0.

10. To explain the law of formation of the multipliers I, II, III, IV, I form the 
matrix 

and then we have 

values which, as I proceed to show, satisfy the identical equation

11. We have in fact 

where the last line is = bd'2 — db'd';
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260] ON THE DOUBLE TANGENTS OF A PLANE CURVE. 193

where the last line is — ba'd' + ea'2; and 

where the last line is ba'c — a'2d.

These values may be expressed as follows:
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194 ON THE DOUBLE TANGENTS OF A PLANE CURVE. [260

which are of the form 

where (12) = —(21), &c., and which therefore satisfy the equation

12. The equation of the curve which by its intersection with the tangent gives the 
tangential s, is 

the degrees of which are 

and it only remains to divest this equation of a factor which it contains, 

which being thrown out, the equation will be independent of (X', Y', Z'} and will be 
of the degrees

in the coefficients of U, 3,-
in («, y, z)............. 4,
in (X, F, Z).................. 2,

and will in fact be the before-mentioned equation fl = D~H — = 0.

13. Write for shortness, 

it is to be shown that
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14. To effect this I remark that we have identically

and I proceed to operate upon this equation with D = + Ft)y + Zdz.

I notice that
a, 1), c, d, e; a', b’, c', d'; a", b", c"

are in regard to (x, y, z) of the degrees

4, 3, 2, 1, 0; 3, 2, 1, 0; 2 , 1 , 0;

or what is the same thing, since for the case in hand n = 4, of the degrees

n, n — 1, ... ; n — 1, n — 2,... ; n — 2, n — 3, ...
and we have

Da = nb, Db = (n — 1) c,... Da' = (n — 1) b', Db' = (n — 2)c',... Da" = (n — 2) b",...
I

15. In the determinant 

the degrees of the terms (other than each top term, the degree of which is higher 
by unity) in the several columns are n— 1, n — 2, n — 2; if then we operate on the 
determinant with D, and as regards the top terms we write 

we have in the first place a term 

which vanishes, and next the terms 
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the first of which vanishes. On the right-hand side DA = 0 identically, and therefore
D . A2// = X-DH. or we have

16. I repeat the operation D: we have 

or, collecting the different terms,

17. A little consideration will show that in this equation we may write n— 1 
for n, and for H. In fact, putting for a moment 3 = + y,dy + zftz, we have
corresponding to the equation 

this other equation, 

where ultimately (arz, yz, ^z) are to be replaced by (a*, y, z\ We may operate upon 
this eauation with I), D2 ... as before, the onlv difference being' that in the first 

www.rcin.org.pl



260] ON THE DOUBLE TANGENTS OF A PLANE CURVE. 197

instance 8a, 8b, &c. are as regards (/», y, z) of degrees lower by unity than a, b, &c., 
that is 7i — l must be substituted throughout in the place of n; and when at the 
end of the process («z, y„ z^ are replaced by (x, y, z}, then 8a, 8b, &c. become equal 
to a, b, &c., from which the truth of the asserted proposition is manifest.

18. Hence writing 7i = 4, we have 

and hence 

which is the required equation

19. It is to be added, that the equation for X2DH gives IV = ^AYDH; the values 
of II and I are at once obtained from those of III and IV by interchanging («, y, z) 
and (X, Y, Z). Hence if we represent by 2, &c. the values which H, D, &c. 
assume by this interchange, we may write 

and the identical equation, 

gives therefore 

which is of itself sufficient to put in evidence the property that the curve D2H —
gives by its intersections with the tangent DJJ= 0, the tangentials of the point («, y, z). 
The last-mentioned equation is the equation for a quartic corresponding to Mr Salmon’s 
equation 

for the cubic U = 0.
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20. It is worth while to give the investigation of the equation for the cubic; 
the matrix is / „ 7. - . 7/ \

and the identical equation is
< 

where

or, as we may express them,
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260] ON THE DOUBLE TANGENTS OF A PLANE CURVE. 199

which verify the identical equation. We have III = — A?DH, IV = A22T, and thence
II = + A22)«£), I = — A2Jp; hence the equation in question

21. One other example will be sufficient to render manifest the law of the formation 
of the multipliers I, II, III, IV.

In the case of a sextic curve we have the matrix 

the identical equation is 

and the expressions for the multipliers I, II, III, IV are :

22. We have in fact
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which are of the form 

where (12) = —(21) &c., and the equation 

is consequently satisfied.

23. The expression 

leads to 

and consequently the equation of the curve which by its intersections with the 
tangent determines the tangentials of a point of a sextic, is

24. In the general case of a curve of the order n the matrix is 

where, in analogy with what precedes,
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and similarly for the accented letters, so that
a0 = 0 is the equation of the curve;

= 0 is the equation of the first or (n — l)thic polar;
aJl_1 = 0 is the equation of the last or line-polar, or what is the same thing, since (x, y, z)

is a point on the curve, the tangent at this point;
an = 0, the condition which expresses that («, y, z) is a point of the curve;
and we have to form the identical equation

a01 + UjII + + ctnIV = 0.

25. If, for shortness, the columns of the last-mentioned matrix are represented by
1, 2, 3...n, (1), (2)... (n—1),

and the determinants formed with these columns respectively by a corresponding 
notation {1, 2, (1)}, {1, 2, (2)}, &c., then the expressions for the multipliers I, II, III, IV 
are as follows, viz.

the truth of the identical equation being shown, as in the foregoing special cases, by 
the transformation of the multipliers into the form 

where (12) = — (21), &c. : the required expressions may be written down without 
difficulty.

26. Proceeding then to reduce the equation
III = -{1, 2, (n —1)} —{1, 3, (n — 2)}... — {1, n-1, (2)}-{l, n, (1)},

we have the equation 

which is to be successively operated on with D. The degrees (less unity) of the 
columns 

are 

and the rule is to operate on each column of the determinant, multiplying by the 
degree less unity, and increasing the symbolical number by unity. Thus 

since [2, 2, (1)} vanishes identically. The following Table shows the mode of effecting
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H 1 = 1 [n-2 ]° [72-2 1° 12(1)

DH 1 = 1 \n - 2' 0 72-2 1 12(2)
1 1 [n - 2 1 72—2 0 13(1)

Dm 1 = 1 n — 2 0 72—2 2 12(3)
1 1 2 n — 2 1 72—2 1 13(2)

1 1 n — 2 2 72—2 0 14(1)

1 1 [n — 2]1 [72 — 2]° [72 -l]1 23(1)

D^H 1 1 n — 2 0 77 — 2 3 12(4)
2 1 3 n — 2 1 72—2 2 13(3)
1 2 3 n — 2 2 72—2 1 14(2)

1 1 n — 2 3 72 — 2 0 15(1)

1
1

2
1

3
2

\n - 211
\n - 2j2 O

1

1 
1

1

-IF
23(2)
24(1)

Dm 1 = 1 n — 2 0 77—2 4 12(5)
3 1 4 77 — 2 1 72 — 2 3 13(4)
3 3 6 77—2" 2 72—2 2 14(3)
1 3 4 77 — 2" 3 72 — 2 1 15(2)

1 1 72 — 2 4 72—2 0 16(1)

3 3 6 72 — 2 1 72—2 2 23(3)
2 3 3 8 >2-2 2 72—2 1 -l]1 24(2)

2 1 3 72 — 2" 3 72 — 2 0 25(1)
2 2 [n — 2]2 72 — 2]° [72 -l]2 34(1)

Dm 1 = 1 72 — 2 0 72—2 5 12(6)
4 1 5 72-2 1 72—2 4 13(5)
6 4 10 72 — 2j 2 72—2 3 14(4)
4 6 10 72 — 2 3 >2 - 21 2 15(3)
1 4 5 77—2 4 72 — 2 1 16(2)

1 1 72 — 2 5 72—2 0 17(1)

6 4 10 72 — 2 1 77—2 4 23(4)
8 6 6 20 72-2 2 77—2 3

[n -IF
24(3)

3 8 4 15 72 — 2 3 w - 2' 25(2)
3 1 4 72 — 2 4 72 — 2 1 26(1)

2
2

8
3

10
5

72 - 2j
[n- 2]

2

3
72 — 2
72 — 2

1 [ h -l]2 34(2)
35(1)

Dm 1 = 1 72 — 2 0 72—2 6 12(7)
5 1 6 72 — 2 1 72 — 2 5 13(6)

10 5 15 72—2 2 72-2 4 14(5)
10 10 20 72 — 2 3 72 — 2 3 15(4)
5 10 15 72 — 2 4 72—2 2 16(3)
1 5 6 72 — 2 5 77—2 1 17(2)

1 1 72 — 2 6 72—2 0 18(1)
10 5 15 72 — 2 1 72—2’ 23(5)
20 10 10 40 72 — 2 2 72—2 ■ 24(4)
15 20 10 45 72 — 2 72—2 [72 -IF 25(3)
4 15 5 24 ’7 - 2" 7—2 26(2)

4 1 5 72 — 2 7 — 2]
J

27(1)
10 20 30 72 — 2] 2 - 2]2) 34(3)

5 10 15 30 72 — 2 2—2 : [72 -1]# 35(2)
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where the first three columns show the numbers which give, by the addition of the 
numbers in the same horizontal line, the numerical coefficients of the factorials which 
multiply the different terms of H, DH, &c., and where in the last column 12(1), &c. 
are written for shortness in the place of [1, 2, (1)], &c.

27. It is clear that we have in general 

and the general term is 

where s extends from s = 0 to s = r — 28, and 8 from 8 = 0 to 8 = |r or |(r — 1), according 
as r is even or odd. The expression for the coefficients Rsti is 

and that of the other coefficients A.,s(8 = or< 1) is not required for the present purpose.

28. According to a remark already made, the expressions for DrHx, DrH„, &c. are 
at once obtained from that for D‘H by merely writing n—1, n—2, &c. in the place 
of n: it is however to be noticed, that the quantity within the [ ] must not be 
negative, and that on its becoming so, the factorial is to be omitted.
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29. I write now 

and I consider the expression 

the general term of which is

X

or, as this may be written, putting q = n — 8 — 1,

~r O6u. j

30. I assume r n — 2, we have then a + — r — 8 > n — 8 — 2, and therefore
a + /3 <q. The general term of the series in {} is

LJJ
where the terms for which n — 2 — is negative are to be excluded, or what is the 
same thing, the series is not to be continued beyond = n — 2. But observing that 

vanishes for A > q, that is, > n — 8 — 1, it is in fact the same thing whether the 
series is continued indefinitely or only to the term for which = n —8 —1, and we 
may consistently with the condition continue the series as far as^ = n —8—1,
except in the case 8 = 0, when by doing so we include the term corresponding to 
A — n — 1, which in virtue of the condition ought to be excluded. The expression for 
the term in question is (—)n-1[—1]“[— I]3; hence if the sum of the series continued 
to the proper point is S, the sum continued indefinitely (in the particular case 8=0) 
is $ + (—)n~1[—1]“[—l]3, but in every other case the sum continued indefinitely is 
simply 8. And by a well-known theorem in finite differences, the sum continued 
indefinitely is in fact zero. That is, except in the case 8 = 0, we have $ = 0, but in the 
excepted case 

or observing that a + j3 (= r — 8) is in this case = r, and transforming the factorials, 
we have

Ci / \/»__ a. r -l-rma

or substituting for a and /3 their values,
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31. Hence the general term of 

vanishes except for 8 = 0, but when 8 = 0, its value is

or observing that Rs° is equal to [sp[r — the value is simply 

that is, we have 

the summation in respect to s extending from s = 0 to s = r. In particular, giving to 
r the values n - 2 and n - 1, and attending to the expressions for III and IV, we find

c
32. The equation III = 0 belongs to the curve which by its intersections with the 

tangent, gives the tangentials of a point of the curve £7=0. Hence the equation of 
the curve in question is 

which is Mr Salmon’s theorem, leading to the solution of the problem of double 
tangents.

33. The expressions for I and II are obtained from those of IV and III by 
interchanging (X, Y, Z) and (x, y, z), and reversing the sign. Hence if, as before, 
«£>, $>, &c. denote the values which H, D, &c. assume by this interchange, we have 

and the identical equation
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becomes therefore

X — ' /

which is the general identical equation referred to in the introduction to the present 
memoir.

34. It is to be noticed that for n = 3, the equation is

But we have = H, and in like manner = £), and the equation thus becomes

And so also for n = 4, the equation is

But we have in general and therefore in the present case DH, = %DH,

and consequently i, and the equation thus becomes

which agree with the results previously obtained for the two particular cases.
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