802.

NOTE ON CAPTAIN MACMAHON'S PAPER, "ON THE DIFFERENTIAL EQUATION $X^{-\frac{3}{3}} d x+Y^{-\frac{3}{3}} d y+Z^{-\frac{3}{3}} d z=0$."

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xIX. (1883), pp. 182-184.]

In general, if $f,=(x, y, 1)^{3},=0$ be the equation of a cubic curve, and if

$$
d \omega=\frac{d x}{\frac{d f}{d y}},=\frac{-d y}{\frac{d f}{d x}},
$$

then if $1,2,3$ are the intersections of the curve by an arbitrary right line, the coordinates of these points being $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ respectively, we have, by Abel's theorem,

$$
d \omega_{1}+d \omega_{2}+d \omega_{3}=0,
$$

viz. this is the differential relation corresponding to the integral relation which expresses that the three points are the intersections of the cubic curve by a right line, or say to the integral equation

$$
\nabla,=\left|\begin{array}{lll}
y_{1}, & y_{2}, & y_{3} \\
x_{1}, & x_{2}, & x_{3} \\
1, & 1, & 1
\end{array}\right|,=0
$$

in which equation y_{1}, y_{2}, y_{3} are regarded as functions of $\vec{x}_{1}, x_{2}, x_{3}$ respectively, given by means of the equations $f_{1}=0, f_{2}=0, f_{3}=0$ which express that the points are on the cubic curve. See my "Memoir on the Abelian and Theta Functions," [819].

In particular, if the equation of the curve is

$$
f,=\frac{1}{3}\left\{y^{3}-\left(A+3 B x+3 C x^{2}+D x^{3}\right)\right\}, \quad=\frac{1}{3}\left(y^{3}-X\right), \quad=0,
$$

then

$$
d \omega=\frac{d x}{y^{2}}, \quad=\frac{d x}{X^{\frac{2}{3}}}:
$$

and corresponding to the differential relation

$$
X_{1}^{-\frac{2}{3}} d x_{1}+X_{2}^{-\frac{2}{3}} d x_{2}+X_{3}^{-\frac{2}{3}} d x_{3}=0,
$$

we have the integral relation

$$
\nabla,=\left|\begin{array}{ccc}
X_{1}^{\frac{1}{3}}, & X_{2}^{\frac{1}{3}}, & X_{3}^{\frac{1}{3}} \\
x_{1}, & x_{2}, & x_{3} \\
1, & 1, & 1
\end{array}\right|=0
$$

viz. this last equation, as containing no arbitrary constant, is a particular integral of the differential equation.

If instead of x_{1}, x_{2}, x_{3} we write x, y, z, then we have

$$
\nabla=\left|\begin{array}{ccc}
X^{\frac{1}{3}}, & Y^{\frac{1}{3}}, & Z^{\frac{1}{3}} \\
x, & y, & z \\
1, & 1, & 1
\end{array}\right|,=0
$$

as a particular integral of the differential equation

$$
X^{-\frac{2}{3}} d x+Y^{-\frac{2}{3}} d y+Z^{-\frac{2}{3}} d z=0
$$

To rationalize the integral equation, write
the equation is

$$
\alpha, \beta, \gamma=y-z, z-x, x-y \text { (so that } \alpha+\beta+\gamma=0 \text {), }
$$

and we thence have

$$
\alpha X^{\frac{1}{3}}+\beta Y^{\frac{1}{3}}+\gamma Z^{\frac{1}{3}}=0 ;
$$

$$
\alpha^{3} X+\beta^{3} Y+\gamma^{3} Z=3 \alpha \beta \gamma X^{\frac{1}{3}} Y^{\frac{1}{3}} Z^{\frac{1}{3}} .
$$

The left-hand side is

$$
\begin{array}{r}
a^{3}\left(A+3 B x+3 C x^{2}+D x^{3}\right) \\
+\beta^{3}\left(A+3 B y+3 C y^{2}+D y^{3}\right) \\
+\gamma^{3}\left(A+3 B z+3 C z^{2}+D z^{3}\right) ;
\end{array}
$$

or assuming

$$
\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}=x(y-z), y(z-x), z(x-y)\left(\text { so that } \alpha^{\prime}+\beta^{\prime}+\gamma^{\prime}=0\right) \text {, }
$$

this is

$$
=A\left(\alpha^{3}+\beta^{3}+\gamma^{3}\right)+3 B\left(\alpha^{2} \alpha^{\prime}+\beta^{2} \beta^{\prime}+\gamma^{3} \gamma^{\prime}\right)+3 C\left(\alpha \alpha^{\prime 2}+\beta \beta^{\prime 2}+\gamma \gamma^{\prime 2}\right)+D\left(\alpha^{\prime 3}+\beta^{\prime 3}+\gamma^{\prime 3}\right) .
$$

But taking λ arbitrary, and

$$
a, \dot{b}, c=\alpha+\lambda \alpha^{\prime}, \quad \beta+\lambda \beta^{\prime}, \quad \gamma+\lambda \gamma^{\prime},
$$

then
whence

$$
\begin{aligned}
& a+b+c=0 \\
& a^{3}+b^{3}+c^{3}=3 a b c
\end{aligned}
$$

or substituting for a, b, c their values, and comparing the coefficients of the several powers of λ,

$$
\begin{aligned}
& \alpha^{3}+\beta^{3}+\gamma^{3}=3 \alpha \beta \gamma, \\
& \alpha^{2} \alpha^{\prime}+\beta^{2} \beta^{\prime}+\gamma^{2} \gamma^{\prime}=\alpha^{\prime} \beta \gamma+\beta^{\prime} \gamma^{\alpha}+\gamma^{\prime} \alpha \beta=\alpha \beta \gamma(x+y+z) \text {, } \\
& \alpha \alpha^{\prime 2}+\beta \beta^{\prime 2}+\gamma \gamma^{\prime 2}=\alpha \beta^{\prime} \gamma^{\prime}+\beta \gamma^{\prime} \alpha^{\prime}+\gamma^{\prime} \beta^{\prime}=\alpha \beta \gamma(y z+z x+x y) \text {, } \\
& \alpha^{\prime 3}+\beta^{\prime 3}+\gamma^{\prime 3}=3 \alpha^{\prime} \beta^{\prime} \gamma^{\prime}=3 \alpha \beta \gamma . x y z \text {. }
\end{aligned}
$$

Hence we have

$$
\alpha^{3} X+\beta^{3} Y+\gamma^{3} Z=3 \alpha \beta \gamma\{A+B(x+y+z)+C(y \ddot{z}+z x+x y)+D x y z\},
$$

or the integral equation is
that is,

$$
\begin{gathered}
\{A+B(x+y+z)+C(y z+z x+x y)+D x y z\}=X^{\frac{1}{3}} Y^{\frac{1}{2}} Z^{\frac{1}{3}} \\
\{A+B(x+y+z)+C(y z+z x+x y)+D x y z\}^{3}=X Y Z
\end{gathered}
$$

the elegant result given by Capt. MacMahon at the beginning of his paper.

The author in a letter to me, dated Jan. 13, 1883, remarks that the particular integral of the equation in question

$$
X^{-\frac{2}{3}} d x+Y^{-\frac{2}{3}} d y+Z^{-\frac{2}{3}} d z=0
$$

is expressible as a determinant in a rational form as follows. Writing it $X Y Z=P^{3}$, where

$$
P=A+B(x+y+z)+C(y z+z x+x y)+D x y z
$$

then the form is

$$
\nabla,=\left|\begin{array}{l}
1,\left(\frac{1}{3} P \frac{d X}{d x}-X \frac{d P}{d x}\right)^{3}, X \\
1,\left(\frac{1}{3} P \frac{d Y}{d y}-Y \frac{d P}{d y}\right)^{3}, Y \\
1,\left(\frac{1}{3} P \frac{d Z}{d z}-Z \frac{d P}{d z}\right)^{3}, Z
\end{array}\right|=0
$$

for, as shown by Captain MacMahon in his paper, each of the three terms such as

$$
Z\left(\frac{1}{3} P \frac{d Y}{d y}-Y \frac{d P}{d y}\right)^{3}-Y\left(\frac{1}{3} P \frac{d Z}{d z}-Z \frac{d P}{d z}\right)^{3}
$$

which compose the determinant, is divisible by $X Y Z-P^{3}$.
It may be added that we have identically

$$
\frac{1}{3} P \frac{d X}{d x}-X \frac{d P}{d x}=\left(A C-B^{2}\right)(2 x-y-z)+(A D-B C)\left(x^{2}-y z\right)+\left(B D-C^{2}\right)\left(x^{2} y+x^{2} z-2 x y z\right)
$$

and of course like values for the other two expressions in the determinant.

