804.

ON THE ELLIPTIC-FUNCTION SOLUTION OF THE EQUATION

$$
x^{3}+y^{3}-1=0
$$

[From the Proceedings of the Cambridge Philosophical Society, vol. Iv. (1883),
pp. 106-109.]

I HAD occasion to find elliptic-function expressions for the coordinates (x, y) of a point on the cubic curve $x^{3}+y^{3}=1$. These are derivable from the formulæ given, Legendre, Fonctions Elliptiques, t. I. pp. 185, 186, for the reduction to elliptic integrals of the integral $R=\int \frac{d r}{\left(1-z^{3}\right)^{\frac{2}{3}}}$. Legendre, writing

$$
z=\frac{\sqrt{4 y^{3}-1}-\sqrt{3}}{\sqrt{4 y^{3}-1}+\sqrt{3}}
$$

and then
finds first

$$
m^{3}=2 \text { and } m^{2} y=1+x^{2}
$$

$$
R=m \sqrt{3} \int \frac{d x}{\sqrt{x^{4}+3 x^{2}+3}}
$$

and then writing $r=\sqrt[4]{3}, x=\tan \frac{1}{2} \phi$, and $c^{2}=\frac{1}{4}\left(2-r^{2}\right)$, finds

$$
R=\frac{1}{2} m r \int \frac{d \phi}{\sqrt{1-c^{2} \sin ^{2} \phi}}
$$

we have therefore only to write $\sin \phi=\operatorname{sn} u$, to modulus

$$
c,=\frac{1}{2} \sqrt{2-\sqrt{3}},
$$

and we thence obtain an expression for z in terms of the elliptic functions $\operatorname{sn} u, \operatorname{cn} u, \operatorname{dn} u$.
Writing x instead of z, and k for c, then

$$
m=\sqrt[3]{2}, \quad r=\sqrt[4]{3} ; \quad k=\frac{1}{2} \sqrt{2-r^{2}}, \quad k^{\prime}=\frac{1}{2} \sqrt{2+r^{2}} .
$$

Working out the substitutions, the resulting formulæ are

$$
\begin{aligned}
& x=\frac{2 r \operatorname{sn} u \operatorname{dn} u-(1+\operatorname{cn} u)^{2}}{2 r \operatorname{sn} u \operatorname{dn} u+(1+\operatorname{cn} u)^{2}}, \\
& y=\frac{m(1+\operatorname{cn} u)\left\{1+r^{2}+\left(1+r^{2}\right) \mathrm{cn} u\right\}}{2 r \operatorname{sn} u \operatorname{dn} u+(1+\operatorname{cn} u)^{2}},
\end{aligned}
$$

where the modulus is k as above; and these values give

$$
\begin{aligned}
x^{3}+y^{3} & =1 \\
\frac{d x}{\left(1-x^{3}\right)^{\frac{2}{3}}}, & =\frac{-d y}{\left(1-y^{3}\right)^{\frac{2}{3}}}=\frac{1}{2} m r d u .
\end{aligned}
$$

The verification is interesting enough; starting from the expression for x, and for shortness representing it by

$$
x=\frac{A-B}{A+B},
$$

we have

$$
1-x^{3}=\frac{2 B\left(3 A^{2}+B^{2}\right)}{(A+B)^{3}},=\frac{m^{3}(1+\mathrm{cn} u)^{2}\left(3 A^{2}+B^{2}\right)}{\left\{2 r \operatorname{sn} u \operatorname{dn} u+(1+\operatorname{cn} u)^{2}\right\}^{3}} .
$$

We find

$$
\begin{aligned}
3 A^{2}+B^{2} & =12 r^{2} \mathrm{cn}^{2} u \operatorname{dn}^{2} u+(1+\operatorname{cn} u)^{4}, \\
& =(1+\mathrm{cn} u)\left\{12 r^{2}(1-\operatorname{cn} u)\left(k^{\prime 2}+k^{2} \mathrm{cn}^{2} u\right)+(1+\operatorname{cn} u)^{3}\right\},
\end{aligned}
$$

where the term in $\}$ is a perfect cube

$$
=\left[1+\mathrm{cn} u+r^{2}(1-\mathrm{cn} u)\right]^{3} .
$$

The last-mentioned expression is, in fact,

$$
=(1+\mathrm{cn} u)^{3}+r^{2}(1-\mathrm{cn} u)\left[3(1+\mathrm{cn} u)^{2}+3 r^{2}(1+\mathrm{cn} u)(1-\mathrm{cn} u)+r^{4}(1-\mathrm{cn} u)^{2}\right],
$$

where the second term is

$$
=12 r^{2}(1-\mathrm{cn} u)\left[\frac{1}{2}\left(1+\mathrm{cn}^{2} u\right)+\frac{1}{4} r^{2}\left(1-\mathrm{cn}^{2} u\right)\right],
$$

that is, it is

$$
\left.=12 r^{2}(1-\mathrm{cn} u)\left(k^{\prime 2}+k^{2} \mathrm{cn}^{2} u\right)\right) .
$$

We have consequently

$$
1-x^{3}=\frac{m^{3}(1+\operatorname{cn} u)^{3}\left\{1+r^{2}+\left(1-r^{2}\right) \mathrm{cn} u\right\}^{3}}{\left\{2 r \operatorname{sn} u \operatorname{dn} u+(1+\operatorname{cn} u)^{2}\right\}^{3}}
$$

or extracting the cube root $y,=\sqrt{1-x^{3}}$, has its foregoing value: and the differential expressions are then verified.

Suppose $y=1$, we have

$$
(m-1)(1+\mathrm{cn} u)^{2}+m r^{2}\left(1-\mathrm{cn}^{2} u\right)=2 r \mathrm{sn} u \mathrm{dn} u,
$$

that is,

$$
\begin{aligned}
(m-1)^{2}(1+\operatorname{cn} u)^{3} & +2 m(m-1) r^{2}(1+\operatorname{cn} u)^{2}(1-\operatorname{cn} u) \\
& +3 m^{2}(1+\operatorname{cn} u)(1-\operatorname{cn} u)^{2}=r^{2}(1-\operatorname{cn} u)\left\{4-4 k^{2}\left(1-\mathrm{cn}^{2} u\right)\right\}
\end{aligned}
$$

or observing that the right-hand side is

$$
=r^{2}(1-\operatorname{cn} u)\left\{(1+\operatorname{cn} u)^{2}+(1-\operatorname{cn} u)^{2}+r^{2}(1+\operatorname{cn} u)(1-\mathrm{cn} u)\right\},
$$

and multiplying by $\frac{1}{3} r^{2}$, the equation becomes

$$
\begin{aligned}
0=\frac{1}{3}(m-1)^{2} r^{2}(1+\mathrm{cn} u)^{3}+\left(2 m^{2}\right. & -2 m+1)(1+\mathrm{cn} u)^{2}(1-\mathrm{cn} u) \\
& +\left(m^{2}-1\right) r^{2}(1+\mathrm{cn} u)(1-\mathrm{cn} u)^{2}-(1-\mathrm{cn} u)^{3}
\end{aligned}
$$

viz. this is

$$
0=\left\{\frac{1}{3} r^{2}\left(m^{2}-1\right)(1+\mathrm{cn} u)-(1-\mathrm{cn} u)\right\}^{3},
$$

as is immediately verified: hence writing. $\frac{1}{3} r^{2}=\frac{1}{r^{2}}$, we have for the value in question, $y=1$,

$$
\left(m^{2}-1\right)(1+\operatorname{cn} u)-r^{2}(1-\operatorname{cn} u)=0
$$

or say

$$
m^{2}(1+\mathrm{cn} u)=(1+\mathrm{cn} u)+r^{2}(1-\mathrm{cn} u)
$$

that is,

$$
\operatorname{cn} u=\frac{r^{2}+1-m^{2}}{r^{2}-1+m^{2}}
$$

which is one of the values of $\mathrm{cn} u$ derived from the equation $x=0$; but this equation $x=0$ gives, not the foregoing equation, but

$$
m^{6}(1+\operatorname{cn} u)^{3}=\left\{(1+\operatorname{cn} u)+r^{2}(1-\operatorname{cn} u)\right\}^{3},
$$

viz. the three values of $\mathrm{cn} u$ are the foregoing value and the two values obtained therefrom by changing m into ωm and $\omega^{2} m$ respectively, ω being an imaginary cube root of unity. In fact, the curve $x^{3}+y^{3}=1$ has at the point $x=0, y=1$ an inflexion, the tangent being $y=1$, so that this line meets the curve in the point counting three times; but the line $x=0$ meets the curve in the point, and besides in two imaginary points.

