805.

NOTE ON ABEL'S THEOREM.

[From the Proceedings of the Cambridge Philosophical Society, vol. Iv. (1883), pp. 119-122.]

Considering Abel's theorem in so far as it relates to the first kind of integrals, and as a differential instead of an integral theorem, the theorem may be stated as follows :

We have a fixed curve $f(x, y, 1)=0$ of the order m; this implies a relation $f^{\prime}(x) d x+f^{\prime}(y) d y=0$, between the differentials $d x, d y$ of the coordinates of a point on the curve; and we may therefore write

$$
d \omega=\frac{d x}{f^{\prime}(y)}=-\frac{d y}{f^{\prime}(x)},
$$

and, instead of $d x$ or $d y$, use $d \omega$ to denote the displacement of a point (x, y) on the curve.

Taking for greater simplicity the fixed curve to be a curve without nodes or cusps, and therefore of the deficiency $\frac{1}{2}(m-1)(m-2)$, we consider its $m n$ intersections by a variable curve $\phi(x, y, 1)=0$ of the order n. And then, if $(x, y, 1)^{m-3}$ denote an arbitrary rational and integral function of (x, y) of the order $m-3$, the theorem is that we have between the displacements $d \omega_{1}, d \omega_{2}, \ldots, d \omega_{m n}$ of the $m n$ points of intersection, the relation

$$
\Sigma(x, y, 1)^{m-3} d \omega=0
$$

where the left-hand side is the sum of the values of $(x, y, 1)^{m-3} d \omega$, belonging to the $m n$ points of intersection respectively.

For the proof, observe that, varying in any manner the curve ϕ, we obtain

$$
\frac{d \phi}{d x} d x+\frac{d \phi}{d y} d y+\delta \phi=0
$$

where $\delta \phi$ is that part which depends on the variation of the coefficients, of the whole variation of ϕ; viz. if $\phi=a x^{n}+b x^{n-1} y+\ldots$, then $\delta \phi=x^{n} d a+x^{n-1} y d b+\ldots$; $\delta \phi$ is thus, in regard to the coordinates (x, y), a rational and integral function of the order n. Writing in this equation

$$
d x, d y=\frac{d f}{d y} d \omega, \quad-\frac{d f}{d x} d \omega,
$$

the equation becomes

$$
\left(\frac{d \phi}{d x} \frac{d f}{d y}-\frac{d \phi}{d y} \frac{d f}{d x}\right) d \omega+\delta \phi=0
$$

or say

$$
-J(f, \phi) d \omega+\delta \phi=0,
$$

that is,

$$
d \omega=\frac{\delta \phi}{J(f, \phi)}
$$

and then multiplying each side by the arbitrary function $(x, y, 1)^{m-3}$, we have

$$
\Sigma(x, y, 1)^{m-3} d \omega=\Sigma \frac{(x, y, 1)^{m-3}}{J(f, \phi)} \delta \phi
$$

where $\delta \phi$ being of the order n in the variables, the numerator is a rational and integral function of (x, y) of the order $m+n-3$: hence by a theorem contained in Jacobi's paper "Theoremata nova algebraica circa systema duarum æquationum inter duas variabiles," Crelle, t. xıv. (1835), pp. 281-288, [Ges. Werke, t. III., pp. 285-294], the sum on the right-hand side is $=0$: hence the required result $\Sigma(x, y, l)^{m-3} d \omega=0$.

Observing that $(x, y, 1)^{m-3}$ is an arbitrary function, the equation just obtained breaks up into the equations

$$
\Sigma d \omega=0, \quad \Sigma x d \omega=0, \quad \Sigma y d \omega=0, \ldots, \quad \Sigma x^{m-3} d \omega=0, \ldots, \quad \Sigma y^{m-3} d \omega=0
$$

viz. the number of equations is

$$
1+2+\ldots+(m-2), \quad=\frac{1}{2}(m-1)(m-2)
$$

which is $=p$, the deficiency of the curve.
Suppose the fixed curve $f(x, y, 1)=0$ is a cubic, $m=3$, and we have the single relation $\Sigma d \omega=0$, where the summation refers to the $3 n$ points of intersection of the cubic and of the variable curve of the order $n, \phi(x, y, 1)=0$.

In particular, if this curve be a line, $n=1$, and the equation is $d \omega_{1}+d \omega_{2}+d \omega_{3}=0$; here the two points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ taken at pleasure on the cubic, determine the line, and they consequently determine uniquely the third point of intersection (x_{3}, y_{3}); there should thus be a single equation giving the displacement $d \omega_{3}$ in terms of the displacements $d \omega_{1}, d \omega_{2} ;$ viz. this is the equation just found

$$
d \omega_{1}+d \omega_{2}+d \omega_{3}=0 .
$$

So if the variable curve be a conic, $n=2$; and we have between the displacements of the six points the relation

$$
d \omega_{1}+d \omega_{2}+\ldots+d \omega_{6}=0:
$$

here five of the points determine the conic, and they therefore determine uniquely the sixth point; and there should be between the displacements a single relation as just found.

If the variable curve be a cubic, $n=3$, and we have between the displacements of the nine points the relation

$$
d \omega_{1}+d \omega_{2}+\ldots+d \omega_{9}=0:
$$

here eight of the points do not determine the cubic ϕ, but they nevertheless determine the ninth point, viz. (reproducing the reasoning which establishes this well-known and fundamental theorem as to cubic curves) if $\phi_{0}=0$ be a particular cubic through the 8 points, then the general cubic is $\phi_{0}+k f=0$, and the intersections with $f=0$ are given by the equations $\phi_{0}=0, f=0$; whence the ninth point is independent of k, and is determined uniquely by the 8 points. There should thus be a single relation between the displacements, viz. this is the relation just found.

And so if the variable curve be a quartic, or curve of any higher order, it appears in like manner that there should be a single relation between the displacements; this relation being in fact the foregoing relation $\Sigma d \omega=0$.

But take the fixed curve to be a quartic, $m=4$: then we have between the displacements $d \omega$ the relation

$$
\Sigma(x, y, 1) d \omega=0,
$$

that is, the three equations

$$
\Sigma x d \omega=0, \quad \Sigma y d \omega=0, \quad \Sigma d \omega=0
$$

If the variable curve is a conic, $n=2$, then there are 8 points of intersection; 5 of these taken at pleasure determine the conic, and they consequently determine the remaining 3 points of intersection: hence there should be 3 equations. And so if the variable curve be a curve of any higher order, then by considerations similar to those made use of in the case where the first curve is a cubic it appears that the number of equations between the displacements $d \omega$ should always be $=3$.

But if the variable curve be a line, $n=1$, then the number of the points of intersection is $=4: 2$ of these taken at pleasure determine the line, and they consequently determine the remaining 2 points of intersection; and the number of equations between the displacements $d \omega$ should thus be $=2$. But by what precedes, we have the 3 equations

$$
\begin{array}{r}
d \omega_{1}+d \omega_{2}+d \omega_{3}+d \omega_{4}=0, \\
x_{1} d \omega_{1}+x_{2} d \omega_{2}+x_{3} d \omega_{3}+x_{4} d \omega_{4}=0, \\
y_{1} d \omega_{1}+y_{2} d \omega_{2}+y_{3} d \omega_{3}+y_{4} d \omega_{4}=0
\end{array}
$$

here the 4 points of intersection are on a line $y=a x+b$; we have therefore $y_{1}=a x_{1}+b, \ldots, y_{4}=a x_{4}+b$; the equations between the $d \omega$'s give

$$
\left(y_{1}-a x_{1}-b\right) d \omega_{1}+\ldots+\left(y_{4}-a x_{4}-b\right) d \omega_{4}=0
$$

that is, is a single relation $0=0$; or the 3 equations thus reduce themselves to 2 independent equations.

Again, if the fixed curve be a quintic, $m=5$, there are here between the displacements the 6 equations

$$
\begin{array}{ll}
\Sigma x^{2} d \omega=0, & \Sigma x y d \omega=0, \\
\Sigma x d y^{2} d \omega=0, \\
\Sigma x d \omega=0, & \Sigma y d \omega=0, \\
\Sigma d \omega=0 ;
\end{array}
$$

the two cases in which the number of independent equations is less than 6 are (i) when the variable curve is a line, and (ii) when the variable curve is a conic. For the line $n=1$, and the number should be $=3$. We have the above 6 equations; but the equation of the line is $a x+b y+c=0$, that is, we have $a x_{1}+b y_{1}+c=0$, \&c.; we deduce the 3 identical equations

$$
\Sigma x(a x+b y+c)=0, \quad \Sigma y(a x+b y+c)=0, \quad \Sigma(a x+b y+c)=0
$$

and the number of independent equations is thus $6-3,=3$ as it should be.
So when the variable curve is a conic, $n=2$; the number of independent equations should be $=5$. The points of intersection lie on a conic $(a, b, c, f, g, h \chi x, y, 1)^{2}=0$; we have therefore the several equations $\left(a, b, c, f, g, h \chi\left(x_{1}, y_{1}, 1\right)^{2}=0\right.$, \&c.: we have therefore the single identical equation

$$
\Sigma(a, b, c, f, g, h \chi x, y, 1)^{2} d \omega=0
$$

and the number of independent equations is $6-1,=5$ as it should be.
Obviously the like considerations apply to the case where the fixed curve is a curve of any given order whatever.
c. XII.

