811.

ON THE LINEAR TRANSFORMATION OF THE THETA FUNCTIONS.

[From the Messenger of Mathematics, vol. xiII. (1884), pp. 54-60.]

The functions referred to are the single Theta Functions; these may be defined as doubly infinite products, as was in fact done in my "Mémoire sur les fonctions doublement périodiques," Liouv. t. x. (1845), pp. 385-420, [25] ; and it is interesting to consider from this point of view the theory of their linear transformation: this I propose to do in the present paper, adopting throughout the notation of Smith's* "Memoir on the Theta and Omega Functions."

The periods $K, i K^{\prime}$ are, in general, imaginary quantities

$$
\begin{aligned}
K & =A+B i, \\
i K^{\prime} & =C+D i,
\end{aligned}
$$

where $A D-B C$ is positive; writing then $\omega=\frac{i K^{\prime}}{K}$, and $q=e^{i \pi \omega}$, also for shortness

$$
(q 1)=2 q^{\frac{d}{3}} \Pi_{1}^{\infty}\left(1-q^{2 n}\right)^{3},
$$

where q^{\ddagger} denotes $e^{\frac{i \pi \pi \omega}{}}$, the expression of the odd theta-function $গ_{1}(x, \omega)$ as a doubly infinite product is

$$
\vartheta_{1}(x, \omega)=(q 1) x \Pi \Pi\left(1+\frac{x}{m \pi+n \omega \pi}\right), \quad\left(\frac{\mu}{\nu}=\infty\right),
$$

where (m, n) have any positive or negative integer values (the combination $m=0, n=0$ excluded) from $m=-\mu$ to μ, and $n=-\nu$ to ν, μ and ν being each ultimately infinite but so that μ is infinite in comparison with ν; this condition in regard to the limits is indicated by $\mu / \nu=\infty$; and similarly $\nu / \mu=\infty$ would indicate that ν was infinite in comparison with μ.
[* Smith's Collected Mathematical Papers, vol. in., pp. 415-621.]

The condition as to the limits might be that (m, n) have any positive or negative values (excluding as before) such that the modulus of $m+n \omega$ does not exceed a positive value T, which is ultimately taken to be infinite; this condition may be indicated by $\bmod =\infty$.

The values of the double product corresponding to the different conditions as to the limits are not equal, but they differ only by an exponential factor, the exponent being a multiple of x^{2}; we thus have

$$
x \Pi \Pi\left(1+\frac{x}{m K+n i K^{\prime}}\right)\left(\frac{\mu}{\nu}=\infty\right)=\exp \left(\nabla x^{2}\right) x \Pi \Pi\left(1+\frac{x}{m K+n i K^{\prime}}\right)(\bmod =\infty),
$$

where ∇ is a determinate value, depending on K and K^{\prime}; and similarly

$$
x \Pi \Pi\left(1+\frac{x}{m \Lambda+n i \Lambda^{\prime}}\right)\left(\frac{\mu}{\nu}=\infty\right)=\exp \left(\square x^{2}\right) x \Pi \Pi\left(1+\frac{x}{m \Lambda+n i \Lambda^{\prime}}\right)(\bmod =\infty),
$$

where \square is a determinate value depending in like manner on $\Lambda, \Lambda^{\prime}$.
We have, then, as above

$$
\begin{aligned}
9_{1}(x, \omega) & =(q 1) x \Pi \Pi\left(1+\frac{x}{m \pi+n \omega \pi}\right)\left(\frac{\mu}{\nu}=\infty\right) \\
& =(q 1) \frac{\pi}{K} \frac{K x}{\pi} \Pi \Pi\left(1+\frac{\frac{K x}{\pi}}{m K+n i K^{\prime}}\right) \\
& =(q 1) \frac{\pi}{K} \exp \left(\nabla \frac{K^{2} x^{2}}{\pi^{2}}\right) \frac{K x}{\pi} \Pi \Pi\left(1+\frac{\frac{K x}{\pi}}{m K+n i K^{\prime}}\right)(\bmod =\infty),
\end{aligned}
$$

viz. we have thus defined $গ_{1}(x, \omega)$ as a doubly infinite product with the limiting condition $(\bmod =\infty)$; if for x we write $\frac{\pi x}{h}, h$ arbitrary, we have

$$
9_{1}\left(\frac{\pi x}{h}, \omega\right)=(q 1) \frac{\pi}{K} \exp \left(\nabla \frac{K^{2} x^{2}}{h^{2}}\right) \frac{K x}{h} \Pi \Pi\left(1+\frac{\frac{K x}{h}}{m K+n i K^{\prime}}\right)(\bmod =\infty),
$$

and similarly, if $\Omega=\frac{i \Lambda^{\prime}}{\Lambda}, Q=e^{i \pi \Omega}$, then

$$
\begin{aligned}
& 9_{1}\left\{(a+b \Omega) \frac{\pi x}{h}, \Omega\right\}=(Q 1) \frac{\pi}{\Lambda} \exp \left\{(a+b \Omega)^{2} \square \frac{\Lambda^{2} x^{2}}{h^{2}}\right\} \\
& \\
& \times(a+b \Omega) \frac{\Lambda x}{h} \Pi \Pi\left(1+\frac{(a+b \Omega) \frac{\Lambda x}{h}}{m \Lambda+n i \Lambda^{\prime}}\right)(\bmod =\infty) .
\end{aligned}
$$

In the case of a linear transformation, we have

$$
\omega=\left|\begin{array}{cc}
a, & b \\
c, & d
\end{array}\right| \times \Omega, \text { that is, } \omega=\frac{c+d \Omega}{a+b \Omega},
$$

where a, b, c, d are positive or negative integers such that $a d-b c=+1$; it is to be shown that the two infinite products are in this case identical; this being so, we have

$$
\frac{I_{1}\left\{(a+b \Omega) \frac{\pi x}{h}, \Omega\right\}}{I_{1}\left\{\frac{\pi x}{h}, \omega\right\}}=\frac{(Q 1)}{(q 1)} \exp \left\{\left\{(a+b \Omega)^{2} \square \Lambda^{2}-\nabla K^{2}\right\} \frac{x^{2}}{h^{2}}\right\},
$$

viz. the two functions differ only by a constant factor and by an exponential factor, the exponent being a multiple of x^{2}; after all reductions, this factor is found to be

$$
=\exp \left(-i \pi b(a+b \Omega) \frac{x^{2}}{h^{2}}\right)
$$

We have

$$
\omega=\frac{c+d \Omega}{a+b \Omega}
$$

or since

$$
\omega=\frac{i K^{\prime}}{\bar{K}}, \quad \Omega=\frac{i \Lambda^{\prime}}{\Lambda}
$$

this is

$$
\frac{i K^{\prime}}{K}=\frac{c \Lambda+d i \Lambda^{\prime}}{a \Lambda+b i \Lambda^{\prime}},
$$

or say

$$
\begin{aligned}
& \frac{1}{M} K=a \Lambda+b i \Lambda^{\prime} \\
& \frac{1}{M} i K^{\prime}=c \Lambda+d i \Lambda^{\prime}
\end{aligned}
$$

either of which equations may be taken as a definition of the multiplier M. We have
if

$$
\begin{aligned}
\frac{K}{M \Lambda} & =a+b \Omega \\
\frac{1}{M}\left(m K+n i K^{\prime}\right) & =(a m+c n) \Lambda+(b m+d n) i \Lambda^{\prime} \\
& =m^{\prime} \Lambda+n^{\prime} i \Lambda^{\prime} \\
m^{\prime} & =a m+c n \\
n^{\prime} & =b m+d n
\end{aligned}
$$

Here to any integer values of (m, n) there correspond integer values of m^{\prime}, n^{\prime}; and conversely, in virtue of the equation $a d-b c=1$, to any integer values of m^{\prime}, n^{\prime} there correspond integer values of m, n. The two products are

$$
\begin{aligned}
& \Pi \Pi\left(1+\frac{\frac{K x}{M h}}{m^{\prime} \Lambda+n^{\prime} i \Lambda^{\prime}}\right),(\bmod =\infty) \\
& \Pi \Pi\left(1+\frac{\frac{(a+b \Omega) \Lambda x}{h}}{m \Lambda+n i \Lambda^{\prime}}\right),(\bmod =\infty)
\end{aligned}
$$

But, as above, we have $\frac{K}{M}=(a+b \Omega) \Lambda$: and then, observing that in the first of the two products we may for m^{\prime}, n^{\prime} write m, n, it at once appears that the two products are identical.

The exponential factor, writing therein $(a+b \Omega) \Lambda=\frac{K}{M}$, becomes

$$
\exp \left\{\left(\frac{\square}{M^{2}}-\nabla\right) \frac{K^{2} x^{2}}{h^{2}}\right\} .
$$

The values of ∇, \square are at once obtained by means of a formula* given in my Memoir, viz. we have

$$
\nabla=-\frac{1}{2}(B+\beta),
$$

where

$$
\begin{aligned}
& B=\frac{\pi\left(\omega v+\omega^{\prime} v^{\prime}\right)}{\Omega \Upsilon \bmod \left(\omega v^{\prime}-\omega^{\prime} v\right)}, \\
& \beta=\frac{\pi i}{\Omega \Upsilon} \frac{\left(\omega v^{\prime}-\omega^{\prime} v\right)}{\bmod \left(\omega v^{\prime}-\omega^{\prime} v\right)} .
\end{aligned}
$$

Comparing with the present notation

$$
\begin{array}{ll}
\Omega=\omega+\omega^{\prime} i, & =A+B i=K \\
\Upsilon=v+v^{\prime} i, & =C+D i=K^{\prime} i
\end{array}
$$

so that Ω, Υ denote $K, K^{\prime} i$, and $\omega, \omega^{\prime}, v, v^{\prime}$ denote A, B, C, D respectively: $\omega v^{\prime}-\omega^{\prime} v$ is thus $=A D-B C$, which has been assumed to be positive; hence also $\bmod \left(\omega v^{\prime}-\omega^{\prime} v\right)$ $=A D-B C$, and the formula becomes

$$
\nabla=-\frac{1}{2} \pi\left\{\frac{A C+B D}{i(A D-B C)}+1\right\} \frac{1}{K K^{\prime}}
$$

Now writing

$$
\begin{aligned}
\Lambda & =A_{1}+B_{1} i, \\
i \Lambda^{\prime} & =C_{1}+D_{1} i,
\end{aligned}
$$

then we have

$$
\begin{aligned}
& \frac{1}{M}(A+B i)=a \Lambda+b i \Lambda^{\prime}=a\left(A_{1}+B_{1} i\right)+b\left(C_{1}+D_{1} i\right) \\
& \frac{1}{M}(C+D i)=c \Lambda+d i \Lambda^{\prime}=c\left(A_{1}+B_{1} i\right)+d\left(C_{1}+D_{1} i\right)
\end{aligned}
$$

consequently, if

$$
M=\rho(\cos \theta+i \sin \theta)
$$

[* Collected Mathematical Papers, t. I., p. 164. The denominator factor Ω 个 has been omitted (p. 165) by mistake.]
we have

$$
\begin{aligned}
& \frac{1}{\rho}(\quad A \cos \theta+B \sin \theta)=a A_{1}+b C_{1} \\
& \frac{1}{\rho}(-A \sin \theta+B \cos \theta)=a B_{1}+b D_{1} \\
& \frac{1}{\rho}(\quad C \cos \theta+D \sin \theta)=c A_{1}+d C_{1} \\
& \frac{1}{\rho}(-C \sin \theta+D \cos \theta)=c B_{1}+d D_{1}
\end{aligned}
$$

and thence

$$
\frac{1}{\rho^{2}}(A D-B C)=(a d-b c)\left(A_{1} D_{1}-B_{1} C_{1}\right), \quad=\left(A_{1} D_{1}-B_{1} C_{1}\right)
$$

Hence $A_{1} D_{1}-B_{1} C_{1}$ is positive, and we have

$$
\square=-\frac{1}{2} \pi\left\{\frac{A_{1} C_{1}+B_{1} D_{1}}{i\left(A_{1} D_{1}-B_{1} C_{1}\right)}+1\right\} \frac{1}{\Lambda \Lambda^{\prime}}
$$

Take K_{1} the conjugate of K, Λ_{1} the conjugate of Λ, then

$$
\begin{aligned}
K_{1} & =A-B i, \quad \Lambda_{1}=A_{1}-B_{1} i \\
i K^{\prime} & =C+D i, \\
i \Lambda^{\prime} & =C_{1}+D_{1} i
\end{aligned}
$$

We have

$$
i K_{1} K^{\prime}=A C+B D+i(A D-B C)
$$

and therefore

$$
\frac{K_{1} K^{\prime}}{A D-B C}=\frac{A C+B D}{i(A D-B C)}+1, \quad \nabla=\frac{-\frac{1}{2} \pi}{A D-B C} \frac{K_{1}}{K}
$$

and similarly

$$
\square=\frac{-\frac{1}{2} \pi}{A_{1} D_{1}-B_{1} C_{1}} \frac{\Lambda_{1}}{\Lambda} .
$$

The exponential is

$$
\left(\frac{\square}{M^{2}}-\nabla\right) \frac{K^{2} x^{2}}{h^{2}}
$$

and we have

$$
\frac{\square}{M^{2}}-\nabla=\frac{-\frac{1}{2} \pi}{M^{2}\left(A_{1} D_{1}-B_{1} C_{1}\right)} \frac{\Lambda_{1}}{\Lambda}+\frac{\frac{1}{2} \pi}{A D-B C} \frac{K_{1}}{\bar{K}^{2}}
$$

which is

$$
\begin{aligned}
& =\frac{-\frac{1}{2} \pi}{M^{2}\left(A_{1} D_{1}-B_{1} C_{1}\right)} \frac{\Lambda_{1}}{\Lambda}+\frac{\frac{1}{2} \pi}{\rho^{2}\left(A_{1} D_{1}-B_{1} C_{1}\right)} \frac{K_{1}}{K} \\
& =\frac{-\frac{1}{2} \pi}{A_{1} D_{1}-B_{1} C_{1}}\left(\frac{1}{M^{2}} \frac{\Lambda_{1}}{\Lambda}-\frac{1}{\rho^{2}} \frac{K_{1}}{K}\right) .
\end{aligned}
$$

But $\rho / M=\cos \theta-i \sin \theta$, or calling this for a moment P, then $1 / M^{2}=P^{2} / \rho^{2}$, and the formula may be written

$$
\begin{aligned}
\frac{\square}{M^{2}}-\nabla & =\frac{-\frac{1}{2} \pi P}{\rho^{2}\left(A_{1} D_{1}-B_{1} C_{1}\right)}\left(P \frac{\Lambda_{1}}{\Lambda}-P^{-1} \frac{K_{1}}{K}\right) \\
& =\frac{-\frac{1}{2} \pi P}{\rho^{2}\left(A_{1} D_{1}-B_{1} C_{1}\right)}\left\{(\cos \theta-i \sin \theta) \Lambda_{1} K-(\cos \theta+i \sin \theta) \Lambda K_{1}\right\} \frac{1}{K \Lambda} .
\end{aligned}
$$

The term in $\}$ is

$$
\begin{aligned}
& (\cos \theta-i \sin \theta)(A+B i)\left(A_{1}-B_{1} i\right)-(\cos \theta+i \sin \theta)(A-B i)\left(A_{1}+B_{1} i\right), \\
& =\quad 2 \cos \theta\left[-\left(A B_{1}-A_{1} B\right) i\right]-2 i \sin \theta\left(A A_{1}+B B_{1}\right), \\
& =-2 i\left\{\left(A B_{1}-A_{1} B\right) \cos \theta+\left(A A_{1}+B B_{1}\right) \sin \theta\right\}, \\
& =-2 i\left\{B_{1}(A \cos \theta+B \sin \theta)-A_{1}(-A \sin \theta+B \cos \theta)\right\}, \\
& =-2 i \rho\left\{B_{1}\left(a A_{1}+b C_{1}\right)-A_{1}\left(a B_{1}+b D_{1}\right)\right\}, \\
& =+2 i \rho b\left(A_{1} D_{1}-B_{1} C_{1}\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\frac{\square}{M^{2}}-\nabla & =\frac{-\frac{1}{D^{2}} \pi P}{\rho^{2}\left(A_{1} D_{1} B_{1} C_{1}\right)} 2 i b \rho\left(A_{1} D_{1}-B_{1} C_{1}\right) \frac{1}{K \Lambda} \\
& =-\frac{i \pi b P}{\rho} \frac{1}{K \Lambda}=-\frac{i \pi b}{M} \frac{1}{K \Lambda}
\end{aligned}
$$

and the exponential thus is

$$
=\exp \left(-\frac{i \pi b}{M} \frac{1}{K \Lambda} \frac{K^{2} x^{2}}{h^{2}}\right),=\exp \left(-i \pi b \frac{K}{M \Lambda} \frac{x^{2}}{h^{2}}\right) ;
$$

or, since $\frac{K}{M \Lambda}=(a+b \Omega)$, this is

$$
=\exp \left(-i \pi b(a+b \Omega) \frac{x^{2}}{h^{2}}\right)
$$

and we have thus the required formula

$$
\frac{\vartheta_{1}\left\{(a+b \Omega) \frac{\pi x}{h}, \Omega\right\}}{\vartheta_{1}\left\{\frac{\pi x}{h}, \omega\right\}}=\frac{(Q 1)}{(q 1)}(a+b \Omega) \exp \left(-i \pi b(a+b \Omega) \frac{x^{2}}{h^{2}}\right) \text {. }
$$

