813.

[NOTE ON MR GRIFFITHS' PAPER "ON A DEDUCTION FROM THE ELLIPTIC-INTEGRAL FORMULA $y=\sin (A+B+C+\ldots)$ ".]
[From the Proceedings of the London Mathematical Society, vol. xv. (1884), p. 81.]

Consider, for instance,
the cubic transformation

$$
y=\frac{x\left[1+2 \alpha^{\prime}-\left(1+\alpha^{\prime}\right)^{2} x^{2}\right]}{1-\alpha^{2} x^{2}},
$$

where $\alpha^{2}+\alpha^{\prime 2}=1$.
This implies

$$
\sqrt{1-y^{2}}=\frac{\sqrt{1-x^{2}}\left[1-\left(1+\alpha^{\prime}\right)^{2} x^{2}\right]}{1-\alpha^{2} x^{2}}
$$

viz., $\sqrt{1-y^{2}}=$ a rational multiple of $\sqrt{1-x^{2}}$.

Also the quadric transformation

$$
z=\frac{1-\left(1+\beta^{\prime 2}\right) x^{2}}{1-\beta^{2} x^{2}}
$$

where $\beta^{2}+\beta^{\prime 2}=1$.
This implies

$$
\sqrt{1-z^{2}}=\frac{\sqrt{1-x^{2}} \cdot 2 \beta^{\prime} x}{1-\beta^{2} x^{2}}
$$

$\mathrm{v}^{\prime} \mathrm{z}$., $\sqrt{1-z^{2}}=$ a rational multiple of $\sqrt{1-x^{2}}$.

Hence, assuming

$$
u=y z-\sqrt{1-y^{2}} \sqrt{1-z^{2}},
$$

which is a rational function

$$
=\frac{x\left(a_{0}-a_{2} x^{2}+a_{4} x^{4}\right)}{1-\alpha^{2} x^{2} .1-\beta^{2} y^{2}},
$$

we have

$$
\sqrt{1-u^{2}}=y \sqrt{1-z^{2}}+z \sqrt{1-y^{2}}
$$

which is $=\sqrt{1-x^{2}}$ multiplied by a like rational function.

That is, in defining the a_{0}, a_{2}, a_{4}, functions of the two arbitrary coefficients α, β, as above, we have in effect so determined them that $\sqrt{1-u^{2}}$ shall be $=\sqrt{1-x^{2}}$ multiplied by a rational function of x.

We can then further determine a_{0}, a_{2}, a_{4} in such wise that the change of x into $\frac{1}{k x}$ shall change u into $\frac{1}{\lambda u}$; and, this being so, making the change in $\sqrt{1-u^{2}}$, we obtain $\sqrt{1-\lambda^{2} u^{2}}$ in the form, $\sqrt{1-k^{2} x^{2}}$ multiplied by a rational function of x; viz. u is a function of x such that

$$
\frac{d u}{\sqrt{1-u^{2} \cdot 1-\lambda^{2} u^{2}}}=\frac{M d u}{\sqrt{1-x^{2} \cdot 1-k^{2} x^{2}}} .
$$

The theory is thus in effect Jacobi's-with the novelty of combining two lower transformations in such wise that the assumed expression for u as a rational function of x shall give

$$
\sqrt{1-u^{2}}=\sqrt{1-x^{2}} \text { multiplied by a rational function of } x \text {. }
$$

It is not necessary that the equations

$$
y=\text { rational function of } x \text { and } z=\text { rational function of } x
$$

should be elliptic-function transformations. All that is required is that they should be such as to give $\sqrt{1-y^{2}}$ and $\sqrt{1-z^{2}}$ each $=\sqrt{1-x^{2}}$ multiplied by a rational function of x.

