818.

NOTE IN CONNEXION WITH THE HYPERELLIPTIC INTEGRALS OF THE FIRST ORDER.

[From Crelle's Journal der Mathem., t. xcviir. (1885), pp. 95, 96.]
In the early paper by Mr Weierstrass "Zur Theorie der Abelschen Functionen," Crelle's Journal, t. xlviI. (1854), pp. 289-306, we have pp. 302, 303, certain equations (43), and (stated to be deduced from them) an equation (49). Taking for greater simplicity $n=2$, the equations (43) written at full length are

$$
\begin{cases}K_{11} J_{12}-K_{12} J_{11}+K_{21} J_{22}-K_{22} J_{21}{ }_{21}, & K_{11}^{\prime} J_{12}^{\prime}-K_{12}^{\prime} J_{11}^{\prime}+K_{21}^{\prime} J_{22}^{\prime}-K_{22}^{\prime} J_{21}^{\prime}=0, \tag{43}\\ K_{11} J_{12}^{\prime}-K_{12}^{\prime} J_{11}+K_{21} J_{22}^{\prime}-K_{22}^{\prime} J_{21}=0, & K_{12} J_{11}^{\prime}-K_{11}^{\prime} J_{12}+K_{22} J_{21}-K_{21}^{\prime} J_{22}=0, \\ K_{11} J_{11}^{\prime}-K_{11}^{\prime} J_{11}+K_{21} J_{21}^{\prime}-K_{21}^{\prime} J_{21}=\frac{1}{2} \pi, & K_{12} J_{12}^{\prime}-K_{12}^{\prime} J_{12}+K_{22} J_{22}^{\prime}-K_{22}^{\prime} J_{22}=\frac{1}{2} \pi ;\end{cases}
$$

viz. in the theory of the hyperelliptic functions depending on the radical

$$
\sqrt{x-a_{0} \cdot x-a_{1} \cdot x-a_{2} \cdot x-a_{3} \cdot x-a_{4}}
$$

these are relations between the eight integrals K of the first kind, and the eight integrals J of the second kind. Each equation contains both K 's and J 's, and there is not in the paper any express mention of a rolation between the K 's only, which occurs in Rosenhain's Memoir, and is a leading equation in the theory. But taking as before $n=2$, and for the G 's which occur in (49) substituting their values as obtained from the preceding equations (46) and (47), the equation becomes

$$
\text { (49) } K_{11} K_{21}^{\prime}-K_{21} K_{11}^{\prime}+K_{12} K_{22}^{\prime}-K_{22} K_{12}^{\prime}=0,
$$

which is the equation in question: it is the equation $\omega_{0} v_{3}-\omega_{3} v_{0}+\omega_{1} v_{2}-\omega_{2} v_{1}=0$ of Hermite's Memoir "Sur la théorie de la transformation des fonctions Abéliennes," Comptes Rendus, t. xL. (1855).

It is interesting to see how the equation (49) is derived from the equations (43). I write for greater convenience

$$
\begin{array}{rlllllllllllllll}
K_{11}, & K_{12}, & K_{21}, & K_{22}, & K_{11}^{\prime}, & K_{12}^{\prime}, & K_{21}^{\prime}, & K_{22}^{\prime}, & J_{11}, & J_{12}, & J_{21}, & J_{22}, & J_{11}^{\prime}, & J_{12}^{\prime}, & J_{21}^{\prime}, & J_{22}^{\prime} \\
=A, & B, & C, & D, & A^{\prime}, & B^{\prime}, & C^{\prime}, & D^{\prime}, & \alpha, & \beta, & \gamma, & \delta, & \alpha^{\prime}, & \beta^{\prime}, & \gamma^{\prime}, & \delta^{\prime} .
\end{array}
$$

The given equations then are

$$
\begin{cases}A \beta-B \alpha+C \delta-D \gamma=0, & A^{\prime} \beta^{\prime}-B^{\prime} \alpha^{\prime}+C^{\prime} \delta^{\prime}-D^{\prime} \gamma^{\prime}=0 \tag{43}\\ A \beta^{\prime}-B^{\prime} \alpha+C \delta^{\prime}-D^{\prime} \gamma=0, & A^{\prime} \beta-B \alpha^{\prime}+C^{\prime} \delta-D \gamma^{\prime}=0, \\ A \alpha^{\prime}-A^{\prime} \alpha+C \gamma^{\prime}-C^{\prime \prime} \gamma=\frac{1}{2} \pi, & B \beta^{\prime}-B^{\prime} \beta+D \delta^{\prime}-D^{\prime} \delta=\frac{1}{2} \pi\end{cases}
$$

and it is required to show that these lead to the relation

$$
\text { (49) } A C^{\prime}-A^{\prime} C+B D^{\prime}-B^{\prime} D=0 \text {. }
$$

From the first and fourth equations, and from the second and third equations of (43), we deduce

$$
\begin{aligned}
& \left(A C^{\prime}-A^{\prime} C\right) \beta+\left(C \alpha^{\prime}-C^{\prime} \alpha\right) B+\left(C \gamma^{\prime}-C^{\prime} \gamma\right) D=0 \\
& \left(A C^{\prime}-A^{\prime} C\right) \beta^{\prime}+\left(C \alpha^{\prime}-C^{\prime} \alpha\right) B^{\prime}+\left(C \gamma^{\prime}-C^{\prime \prime} \gamma\right) D^{\prime}=0
\end{aligned}
$$

and again from the first and third equations, and from the second and fourth equations of (43), we deduce

$$
\begin{aligned}
& \left(B D^{\prime}-B^{\prime} D\right) \alpha+\left(D \beta^{\prime}-D^{\prime} \beta\right) A+\left(D \delta^{\prime}-D^{\prime} \delta\right) C=0 \\
& \left(B D^{\prime}-B^{\prime} D\right) \alpha^{\prime}+\left(D \beta^{\prime}-D^{\prime} \beta\right) A^{\prime}+\left(D \delta^{\prime}-D^{\prime} \delta\right) C^{\prime}=0
\end{aligned}
$$

These pairs of equations give respectively

$$
A C^{\prime}-A^{\prime} C: C \alpha^{\prime}-C^{\prime} \alpha: C \gamma^{\prime}-C^{\prime} \gamma=B D^{\prime}-B^{\prime} D: D \beta^{\prime}-D^{\prime} \beta:-\left(B \beta^{\prime}-B^{\prime} \beta\right)
$$

and

$$
A C^{\prime}-A^{\prime} C: C \alpha^{\prime}-C^{\prime} \alpha:-\left(A \alpha^{\prime}-A^{\prime} \alpha\right)=B D^{\prime}-B^{\prime} D: D \beta^{\prime}-D^{\prime} \beta: D \delta^{\prime}-D^{\prime} \delta ;
$$

whence putting for shortness $A \alpha^{\prime}-A^{\prime} \alpha, B \beta^{\prime}-B^{\prime} \beta, C \gamma^{\prime}-C^{\prime} \gamma, D \delta^{\prime}-D^{\prime} \delta=\mathrm{a}, \mathrm{b}, \mathrm{c}$, d, we have

$$
\frac{A C^{\prime}-A^{\prime} C}{B D^{\prime}-B^{\prime} D}=-\frac{\mathrm{c}}{\mathrm{~b}}=-\frac{\mathrm{a}}{\mathrm{~d}} ; \text { whence } \mathrm{ab}=\mathrm{cd}
$$

But the last two of the equations (43) are

$$
\mathrm{a}+\mathrm{c}=\frac{1}{2} \pi, \quad \mathrm{~b}+\mathrm{d}=\frac{1}{2} \pi
$$

we have thus $a+c=b+d,=b+\frac{a b}{c},=\frac{b}{c}(a+c)$; or, since $a+c,=\frac{1}{2} \pi$, is not $=0$, this gives $b=c$, whence also $a=d$, and we have

$$
\frac{A C^{\prime}-A^{\prime} C}{B D^{\prime}-B^{\prime} D}=-1,
$$

that is,

$$
A C^{\prime}-A^{\prime} C+B D^{\prime}-B^{\prime} D=0,
$$

the required equation.
Cambridge, 10th September, 1884.

