823.

ON THE GEOMETRICAL INTERPRETATION OF CERTAIN FORMULE IN ELLIPTIC FUNCTIONS.

[From the Johns Hopkins University Circulars, No. 17 (1882), p. 238.]
I have given in my Elliptic Functions expressions for the sn^{2} of $u+\frac{1}{2} K, u+\frac{1}{2} i K^{\prime}$, $u+\frac{1}{2} K+\frac{1}{2} i K^{\prime}$; but it is better to consider the $\mathrm{dn}^{2}, \mathrm{sn}^{2}, \mathrm{cn}^{2}$ of these combinations respectively, and to write the formulæ thus:

$$
\begin{aligned}
& \operatorname{dn}^{2}\left(u+\frac{1}{2} K\right) \quad=k^{\prime} \frac{\operatorname{dn} u-\left(1-k^{\prime}\right) \operatorname{sn} u \operatorname{cn} u}{\operatorname{dn} u+\left(1-k^{\prime}\right) \operatorname{sn} u \operatorname{cn} u} \quad, \quad=k^{\prime} \frac{1-k^{2} x-\left(1-k^{\prime}\right) y}{1-k^{2} x+\left(1-k^{\prime}\right) y} ; \\
& \operatorname{sn}^{2}\left(u+\frac{1}{2} i K^{\prime}\right) \quad=\frac{1}{k} \frac{(1+k) \operatorname{sn} u+i \operatorname{cn} u \operatorname{dn} u}{(1+k) \operatorname{sn} u-i \operatorname{cn} u \operatorname{dn} u} \quad, \quad=\frac{1}{k} \frac{(1+k) x+i y}{(1+k) x-i y} \quad ; \\
& \mathrm{cn}^{2}\left(u+\frac{1}{2} K+\frac{1}{2} i K^{\prime}\right)=\frac{-i k^{\prime}}{k} \frac{\mathrm{cn} u-\left(k+i k^{\prime}\right) \operatorname{sn} u \mathrm{dn} u}{\mathrm{cn} u+\left(k+i k^{\prime}\right) \operatorname{sn} u \mathrm{dn} u},=\frac{-i k^{\prime}}{k} \frac{1-x-\left(k+i k^{\prime}\right) y}{1-x+\left(k+i k^{\prime}\right) \dot{y}} ;
\end{aligned}
$$

where in the last set of values x, y are used to denote $\operatorname{sn}^{2} u$ and $\operatorname{sn} u \operatorname{cn} u \operatorname{dn} u$ respectively; and the formulæ are thus brought into connexion with the cubic curve $y^{2}=x(1-x)\left(1-k^{2} x\right)$. The curve has an inflexion at infinity on the line $x=0$; and the three tangents from the inflexion are $x=0, x=1, x=\frac{1}{k^{2}}$, touching the curve at the points $x, y=(0,0),(1,0),\left(\frac{1}{k^{2}}, 0\right)$ respectively: hence these points are sextactic points. We may from any one of them, for instance the point $(0,0)$, draw four tangents to the curve, $(1+k) x+i y=0,(1+k) x-i y=0$; $(1-k) x+i y=0,(1-k) x-i y=0$; where the first and second of these lines form a pair, and the third and fourth of them form a pair, viz. the two tangents of a pair touch in points such that the line joining them passes through the point of inflexion: in particular, for the first-mentioned pair, the equation of the line joining the points of contact is $1+k x=0$. The linear functions belonging to a pair of tangents are precisely those which present themselves in the formulæ; thus if $T_{1}=(1+k) x+i y, T_{2}=(1+k) x-i y$, the second of the three formulæ is $\operatorname{sn}^{2}\left(u+\frac{1}{2} K\right)=\frac{1}{k} \frac{T_{1}}{T_{2}}$; and the other two formulæ correspond in like manner to pairs of tangents from the sextactic points $\left(\frac{1}{k^{2}}, 0\right)$, and $(1,0)$ respectively. The formulæ are connected with the fundamental equations expressing the functions $\mathrm{sn}, \mathrm{cn}, \mathrm{dn}$ as quotients of theta functions.

