826.

NOTE ON A PARTITION-SERIES.

[From the American Journal of Mathematics, vol. vi. (1884), pp. 63, 64.]

Prof. Sylvester, in his paper, "A Constructive theory of Partitions, \&c.," American Journal of Mathematics, vol. v. (1883), p. 282, has given the following very beautiful formula

$$
\begin{aligned}
(1+a x)\left(1+a x^{2}\right)\left(1+a x^{3}\right) \ldots=1 & +\frac{1}{1-x}\left(1+a x^{2}\right) x a+\frac{1}{1-x .1-x^{2}}(1+a x)\left(1+a x^{4}\right) x^{5} a^{2} \\
& +\frac{1}{1-x .1-x^{2} \cdot 1-x^{3}}(1+a x)\left(1+a x^{2}\right)\left(1+a x^{6}\right) x^{12} a^{3}+\ldots,
\end{aligned}
$$

or, as this may be written,

$$
\Omega=1+P+Q(1+a x)+R(1+a x)\left(1+a x^{2}\right)+S(1+a x)\left(1+a x^{2}\right)\left(1+a x^{3}\right)+\ldots,
$$

where

$$
P=\frac{\left(1+a x^{2}\right) x a}{1}, \quad Q=\frac{\left(1+a x^{4}\right) x^{5} a^{2}}{1.2}, \quad R=\frac{\left(1+a x^{6}\right) x^{12} a^{3}}{1.2 .3}, \quad S=\frac{\left(1+a x^{8}\right) x^{22} a^{4}}{1.2 .3 .4}, \& c .,
$$

the heavy figures 1, 2, 3, 4, \ldots of the denominators being, for shortness, written to denote $1-x, 1-x^{2}, 1-x^{3}, 1-x^{4}, \ldots$ respectively. The x-exponents $1,5,12,22, \ldots$ are the pentagonal numbers $\frac{1}{2}\left(3 n^{2}-n\right)$.

To prove this, writing
$P^{\prime}=\frac{a x^{2}}{1}, \quad Q^{\prime}=\frac{a x^{3}}{1}+\frac{a^{2} x^{7}}{1.2}, \quad R^{\prime}=\frac{a x^{4}}{1}+\frac{a^{2} x^{9}}{1.2}+\frac{a^{3} x^{15}}{1.2 .3}, \quad S^{\prime}=\frac{a x^{5}}{1}+\frac{a^{2} x^{11}}{1.2}+\frac{a^{3} x^{18}}{1.2 .3}+\frac{a^{4} x^{26}}{1 \cdot 2 \cdot 3.4}, \& c c$.,
where the x-exponents are
$2 ; 3,3+4 ; 4,4+5,4+5+6 ; 5,5+6,5+6+7,5+6+7+8 ; \& c .$,
C. XII.
we find without difficulty (see infrà) that

$$
\begin{aligned}
1+P & =(1+a x)\left(1+P^{\prime}\right) \\
1+P^{\prime}+Q & =\left(1+a x^{2}\right)\left(1+Q^{\prime}\right) \\
1+Q^{\prime}+R & =\left(1+a x^{3}\right)\left(1+R^{\prime}\right) \\
1+R^{\prime}+S & =\left(1+a x^{4}\right)\left(1+S^{\prime}\right), \& c .
\end{aligned}
$$

and hence, using Ω to denote the sum

$$
\Omega=1+P+Q(1+a x)+R(1+a x)\left(1+a x^{2}\right)+S(1+a x)\left(1+a x^{2}\right)\left(1+a x^{3}\right)+\ldots
$$

we obtain successively

$$
\begin{aligned}
& \Omega \div(1+a x)=1+P^{\prime}+Q+R\left(1+a x^{2}\right)+S\left(1+a x^{2}\right)\left(1+a x^{3}\right)+\ldots \\
& \Omega \div(1+a x)\left(1+a x^{2}\right)=1+Q^{\prime}+R+S\left(1+a x^{3}\right)+T\left(1+a x^{3}\right)\left(1+a x^{4}\right)+\ldots \\
& \Omega \div(1+a x)\left(1+a x^{2}\right)\left(1+a x^{3}\right)=1+R^{\prime}+S+T\left(1+a x^{4}\right)+\ldots
\end{aligned}
$$

and so on. In these equations, on the right-hand sides, the lowest exponent of x is $2,3,4$, \&c., respectively, so that in the limit the right-hand side becomes $=1$, or the final equation is $\Omega=(1+a x)\left(1+a x^{2}\right)\left(1+a x^{3}\right) \ldots$; viz. we have the series represented by Ω equal to this infinite product, which is the theorem in question.

One of the foregoing identities is

$$
1+R^{\prime}+S=\left(1+a x^{4}\right)\left(1+S^{\prime}\right)
$$

viz. substituting for $R^{\prime}, S, S^{\prime \prime}$ their values, this is

$$
1+\frac{a x^{4}}{1}+\frac{a^{2} x^{9}}{1.2}+\frac{a^{3} x^{15}}{1.2 .3}+\frac{\left(1+a x^{8}\right) a^{4} x^{22}}{1.2 .3 .4}=\left(1+a x^{4}\right)\left\{1+\frac{a x^{5}}{1}+\frac{a^{2} x^{11}}{1.2}+\frac{a^{3} x^{18}}{1.2 .3}+\frac{a^{4} x^{28}}{1.2 .3 .4}\right\}
$$

viz. this equation is

$$
\begin{aligned}
-a x^{4}+\frac{a x^{4}-a x^{5}\left(1+a x^{4}\right)}{1} & +\frac{a^{2} x^{9}-a^{2} x^{11}\left(1+a x^{4}\right)}{1.2} \\
& +\frac{a^{3} x^{15}-a^{3} x^{18}\left(1+a x^{4}\right)}{1.2 .3}+\frac{\left(1+a x^{8}\right) a^{4} x^{22}-a^{4} x^{26}\left(1+a x^{4}\right)}{1.2 .3 .4}
\end{aligned}
$$

that is,

$$
0=-a x^{4}+a x^{4}-\frac{a^{2} x^{9}}{1}+\frac{a^{2} x^{9}}{1}-\frac{a^{3} x^{15}}{1.2}+\frac{a^{3} x^{15}}{1.2}-\frac{a^{4} x^{22}}{1.2 .3}+\frac{a^{4} x^{22}}{1.2 .3}
$$

In the same way each of the other identities is proved.

$$
\text { Writing } \begin{aligned}
a=-1 \text {, we have } \Omega, & =1 \cdot 2 \cdot 3 \cdot 4 \ldots, \\
& =1+P+Q \cdot 1+R \cdot 1 \cdot 2+S \cdot 1 \cdot 2 \cdot 3+\ldots
\end{aligned}
$$

where

$$
P=-(1+x) x, \quad Q=\frac{\left(1+x^{2}\right) x^{5}}{1}, \quad R=-\frac{\left(1+x^{3}\right) x^{12}}{1.2}, \ldots
$$

and therefore

$$
\text { 1.2.3.4 } \ldots=1-(1+x) x+\left(1+x^{2}\right) x^{5}-\left(1+x^{3}\right) x^{12}+\ldots,
$$

which is Euler's theorem.
It might appear that the identities used in the proof would also, for this particular value $a=-1$, lead to interesting theorems; but this is found not to be the case: we have

$$
P^{\prime}=\frac{-x^{2}}{1}, \quad Q^{\prime}=\frac{-x^{3}}{1}+\frac{x^{7}}{1.2}, \quad R^{\prime}=\frac{-x^{4}}{1}+\frac{x^{9}}{1.2}-\frac{x^{5}}{1.2 .3}, \& c .
$$

but the expressions in terms of these quantities for the products 2.3.4.., 3.4... \&c., contain denominator factors, and are thus altogether without interest; we have, for example,

$$
2 \cdot 3 \cdot 4 \ldots=1+\frac{-x^{2}+x^{5}+x^{7}}{1}-\frac{\left(1+x^{3}\right) x^{12}}{1}+\& c .
$$

which is, with scarcely a change of form, the expression obtained from that of the original product $1.2 .3 .4 \ldots$, by division by $1,=1-x$. And similarly as regards the products $3.4 \ldots$, \&c.

Cambridge, June, 1883.

