832.

NOTE ON AN APPARENT DIFFICULTY IN THE THEORY OF CURVES, WHEN THE COORDINATES OF A POINT ARE GIVEN AS FUNCTIONS OF A VARIABLE PARAMETER.

[From the Messenger of Mathematics, vol. XIV. (1885), pp. 12-14.]

SUPPOSE that the homogeneous coordinates x, y, z are given as proportional to the following functions of a parameter λ ,

$$x : y : z = u + \alpha \sqrt{(\Omega)}, \quad v + \beta \sqrt{(\Omega)}, \quad w + \gamma \sqrt{(\Omega)},$$

where u, v, w are linear functions, Ω a cubic function, of the parameter. For the intersections of the curve with the arbitrary line Ax + By + Cz = 0, we have

 $Au + Bv + Cw + (A\alpha + B\beta + C\gamma)\sqrt{(\Omega)} = 0,$

that is,

 $(Au + Bv + Cw)^2 - (A\alpha + B\beta + C\gamma)^2 \Omega = 0,$

a cubic equation in λ ; and the curve is thus a cubic. For the value $\lambda = \infty$ we have $x : y : z = \alpha : \beta : \gamma$, or the point (α, β, γ) is a point of the curve.

Suppose now that the line Ax + By + Cz = 0 is an arbitrary line through the point (α, β, γ) ; viz. let the coefficients A, B, C satisfy the relation $A\alpha + B\beta + C\gamma = 0$; the equation for the determination of λ becomes

$$(Au + Bv + Cw)^2 = 0,$$

which equation has two equal roots, suppose $\lambda = \lambda_0$; and the meaning of this is not at once obvious.

Observe that more properly there is a root $\lambda = \infty$ which has dropped out, and that the roots are $\lambda = \infty$, $\lambda = \lambda_0$, $\lambda = \lambda_0$. The root $\lambda = \infty$ gives the point (α, β, γ) , which is of course one of the intersections of the line with the curve. The two roots λ_0 give not the same intersection but two different intersections of the line with the curve; the line being in fact a line through the point (α, β, γ) of the curve, and which besides meets the curve in two distinct points.

www.rcin.org.pl

832]

$$Au + Bv + Cw + (A\alpha + B\beta + C\gamma)\sqrt{(\Omega)} = 0,$$

viz. the value of $\sqrt{(\Omega)}$ is hereby uniquely determined; and to each of the three values of λ , $\sqrt{(\Omega)}$, there corresponds a determinate point (x, y, z).

But suppose now $A\alpha + B\beta + C\gamma = 0$, and λ determined by the equation

 $(Au + Bv + Cw)^2 = 0,$

giving $\lambda = \lambda_0$, as above. There is no longer an equation for the unique determination of $\sqrt{(\Omega)}$, and to the value $\lambda = \lambda_0$, there correspond the two values $\sqrt{(\Omega_0)}$, $-\sqrt{(\Omega_0)}$ of the radical: and thus to the two roots $\lambda = \lambda_0$, $\lambda = \lambda_0$ correspond the two different points

$$x : y : z = u_0 + \alpha \sqrt{(\Omega_0)} : v_0 + \beta \sqrt{(\Omega_0)} : w_0 + \gamma \sqrt{(\Omega_0)};$$

and

$$x : y : z = u_0 - \alpha \sqrt{(\Omega_0)} : v_0 - \beta \sqrt{(\Omega_0)} : w_0 - \gamma \sqrt{(\Omega_0)}.$$

It is to be added that the point (α, β, γ) is an inflexion on the curve. Write for a moment

 $u, v, w = a\lambda + f, b\lambda + g, c\lambda + h,$

and let A, B, C be determined by the conditions

$$A\alpha + B\beta + C\gamma = 0,$$

$$A\alpha + Bb + Cc = 0.$$

Then the equation for the determination of λ becomes $(Af + Bg + Ch)^2 = 0$, viz. the left-hand is a mere constant, or there are the three equal roots $\lambda = \infty$; the intersections with the curve are thus the point (α, β, γ) three times; hence this point is an inflexion, the tangent being Ax + By + Cz = 0. The second of the two equations may be written

 $Au_{\infty} + Bv_{\infty} + Cw_{\infty} = 0.$

Let λ_1 be one of the roots of the equation $\Omega = 0$; u_1 , v_1 , w_1 the corresponding values of u, v, w, and let A, B, C, be determined by the conditions

$$A\alpha + B\beta + C\gamma = 0,$$

$$Au_1 + Bv_1 + Cw_1 = 0.$$

The equation $(Au + Bv + Cw)^2 = 0$ for the intersections with the curve has the two equal roots $\lambda = \lambda_1$; and to each of these, since now $\sqrt{(\Omega_1)} = 0$, there corresponds the same point $x : y : z = u_1 : v_1 : w_1$; hence the line Ax + By + Cz = 0, or say

$$A_{1}x + B_{1}y + C_{1}z = 0,$$

is a tangent from the inflexion. Similarly, if λ_2 , λ_3 are the other two roots of the equation $\Omega = 0$, we have $A_2x + B_2y + C_2z = 0$, $A_3x + B_3y + C_3z = 0$ for the other two tangents from the inflexion.

It would have been to some extent clearer to have represented the parameter λ as a quotient, say $\lambda = p/q$; the equations for x, y, z would then have been

 $x : y : z = (ap + fq) \sqrt{(q)} + \alpha \sqrt{(\Omega)} : (bp + gq) \sqrt{(q)} + \beta \sqrt{(\Omega)} : (cp + hq) \sqrt{(q)} + \gamma \sqrt{(\Omega)},$ where Ω is now a homogeneous function $(p, q)^3$.

37 - 2

291