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ON A FORMULA IN ELLIPTIC FUNCTIONS.

[From the Messenger of Mathematics, vol. xιv. (188δ), pp. 21, 22.]

Writing s, c, d for the sn, cn, and dn of an argument u, and so in other cases: 
we have s, c, d for the coordinates of a point on the quadriquadric curve x^ + y^=-l, 
z^+k^xP=l. Applying Abel’s theorem to this curve, it appears that, if Mi+ <Z2 + ⅝ + W4 = O, 
the corresponding points are in a plane; that is, the elliptic functions satisfy the 
relation

51, Cl, dγ, 1 ; — 0.

¾ > ; d'2, y 1 j
¾> > d'i, 1
^4> ¢^4, di, 1

This mav be written 

and it may be shown that each of the three lines is, in fact, separately =0.

This appears from the following three formulae :
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which are themselves at once deducible from formulae given, p. 63, of my Elliptic 
Functions, and which may be written

In fact, the numerators of cn (uγ + 'i⅞) — dn (Uγ +1⅛), cn (lij + + 1, dn(M1 + W2) + f
thus become = (si + Sg) — c.i,d^, — (cj + C2) (⅛ — d2S1), {d^ + d.^ {s^c^ — ¾Cι) respectively: 
so that, taking the numerator of sn {u^ + successively under its three forms, we 
have by division the formulae in question. And then, if 1/1+1/2=-(^3 + 114), the functions 
on the left-hand side become, with only a change of sign, the like functions of «3 + 1/4; 
and we thence have the required equations
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