833.

ON A FORMULA IN ELLIPTIC FUNCTIONS.

[From the Messenger of Mathematics, vol. xiv. (1885), pp. 21, 22.]

Writing s, c, d for the sn, cn, and $d \mathrm{dn}$ of an argument u, and so in other cases: we have s, c, d for the coordinates of a point on the quadriquadric curve $x^{2}+y^{2}=1$, $z^{2}+k^{2} x^{2}=1$. Applying Abel's theorem to this curve, it appears that, if $u_{1}+u_{2}+u_{3}+u_{4}=0$, the corresponding points are in a plane; that is, the elliptic functions satisfy the relation

$$
\left|\begin{array}{lll}
s_{1}, & c_{1}, & d_{1}, \\
s_{2} & 1 \\
c_{2}, & d_{2}, & 1 \\
s_{3} & c_{3} & d_{3}, \\
s_{4} & c_{4}, & d_{4}, \\
l_{1}
\end{array}\right|=0 .
$$

This may be written

$$
\begin{aligned}
& \left(s_{2}-s_{1}\right)\left(c_{3} d_{4}-c_{4} d_{3}\right)+\left(s_{4}-s_{3}\right)\left(c_{1} d_{2}-c_{2} d_{1}\right) \\
+ & \left(c_{2}-c_{1}\right)\left(d_{3} s_{4}-d_{4} s_{3}\right)+\left(c_{4}-c_{3}\right)\left(d_{1} s_{2}-d_{2} s_{1}\right) \\
+ & \left(d_{2}-d_{1}\right)\left(s_{3} c_{4}-s_{4} c_{3}\right)+\left(d_{4}-d_{3}\right)\left(s_{1} c_{2}-s_{2} c_{1}\right)=0
\end{aligned}
$$

and it may be shown that each of the three lines is, in fact, separately $=0$.
This appears from the following three formulæ:

$$
\begin{aligned}
& \frac{\operatorname{sn}\left(u_{1}+u_{2}\right)}{\operatorname{cn}\left(u_{1}+u_{2}\right)-\operatorname{dn}\left(u_{1}+u_{2}\right)}= \\
& \frac{s_{1}-s_{2}}{c_{1} d_{2}-c_{2} d_{1}}, \\
& \frac{\operatorname{sn}\left(u_{1}+u_{2}\right)}{\operatorname{cn}\left(u_{1}+u_{2}\right)+1}= \\
& \frac{c_{1}-c_{2}}{d_{1} s_{2}-d_{2} s_{1}}, \\
& \frac{\operatorname{sn}\left(u_{1}+u_{2}\right)}{\operatorname{dn}\left(u_{1}+u_{2}\right)+1}=\frac{-\frac{1}{k^{2}}\left(d_{1}-d_{2}\right)}{s_{1} c_{2}-s_{2} c_{1}},
\end{aligned}
$$

which are themselves at once deducible from formulæ given, p. 63, of my Elliptic Functions, and which may be written

$$
\begin{array}{ll}
\operatorname{sn}\left(u_{1}+u_{2}\right)=s_{1}{ }^{2}-s_{2}{ }^{2}=-\left(c_{1}{ }^{2}-c_{2}{ }^{2}\right)=-\frac{1}{k^{2}}\left(d_{1}{ }^{2}-d_{2}{ }^{2}\right), & \div\left(s_{1} c_{2} d_{2}-s_{2} c_{1} d_{1}\right), \\
\operatorname{cn}\left(u_{1}+u_{2}\right)=s_{1} c_{1} d_{2}-s_{2} c_{2} d_{1}, & \div \\
\operatorname{dn}\left(u_{1}+u_{2}\right)=s_{1} d_{1} c_{2}-s_{2} d_{2} c_{1}, & \div
\end{array}
$$

In fact, the numerators of $\operatorname{cn}\left(u_{1}+u_{2}\right)-\operatorname{dn}\left(u_{1}+u_{2}\right), \operatorname{cn}\left(u_{1}+u_{2}\right)+1, \operatorname{dn}\left(u_{1}+u_{2}\right)+1$ thus become $=\left(s_{1}+s_{2}\right)\left(c_{1} d_{2}-c_{2} d_{1}\right),-\left(c_{1}+c_{2}\right)\left(d_{1} s_{2}-d_{2} s_{1}\right),\left(d_{1}+d_{2}\right)\left(s_{1} c_{2}-s_{2} c_{1}\right)$ respectively: so that, taking the numerator of $\operatorname{sn}\left(u_{1}+u_{2}\right)$ successively under its three forms, we have by division the formulæ in question. And then, if $u_{1}+u_{2}=-\left(u_{3}+u_{4}\right)$, the functions on the left-hand side become, with only a change of sign, the like functions of $u_{3}+u_{4}$; and we thence have the required equations

$$
\frac{s_{1}-s_{2}}{c_{1} d_{2}-c_{2} d_{1}}=-\frac{s_{3}-s_{4}}{c_{3} d_{4}-c_{4} d_{3}}, \& \mathrm{c} .
$$

